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Abstract 
 
Several major issues associated with model validation are addressed here. First, we 
extend the application-based, model validation metric presented in Hills and Trucano 
(2001) to the Maximum Likelihood approach introduced in Hills and Trucano (2002).  
This method allows us to use the target application of the code to weigh the 
measurements made from a validation experiment so that those measurements that are 
most important for the application are more heavily weighted. 
 
Secondly, we further develop the linkage between suites of validation experiments and 
the target application so that we can 1) provide some measure of coverage of the target 
application and, 2) evaluate the effect of uncertainty in the measurements and model 
parameters on application level validation. We provide several examples of this approach 
based on steady and transient heat conduction, and shock physics applications. 
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1.0 Introduction 
 

In the past, numerical models of complex engineered systems were used to provide 
insight during the design phases rather than to validate the designs. Validation of these 
designs was accomplished using prototypes and production versions of the resulting 
engineered systems. As we continue to develop more sophisticated numerical models, our 
dependence on numerical models has increased while our emphasis on experimental 
testing at the systems level has decreased. As a result, our need for increased rigor in the 
assessment of models at the subsystem levels has increased. This requires a more 
complete understanding of the sources and significance of differences between model 
predictions and experimental observations and their impact on systems level validity.  
 
This report is the fourth in a series presenting issues related to numerical model validation 
methodology. In the first report (Hills and Trucano, 1999), the conceptual ideas behind 
numerical model validation in the presence of experimental and model parameter 
uncertainty were presented. We discussed the use of statistical methodology to develop 
model validation metrics for linear and nonlinear models. Examples were presented 
showing the application of these metrics to several physical applications. 
 
The second report (Hills and Trucano, 2001) further demonstrated the use of these 
metrics for one-dimensional shock data. We also introduced the idea of a metric that 
relates the anticipated target application of a model to the measurements taken from 
validation experiments. This linkage is important since the validation experiments 
generally do not exactly represent the target application. Validation experiments are 
typically carefully controlled so that the sources of potential differences between 
observation and prediction are correctly resolved. For this reason, validation experiments 
as typically designed to test only a subset of the physics important to the system 
application. Suites of validation experiments are used to cover the range of physics and 
the range of anticipated conditions (or parameters) for the target application. 
Mathematically defining the link between the validation experiments and the target 
application is important if we wish to provide quantitative evidence as to how well our 
suite of validation experiments represent the anticipated application of the model. The 
application-based metric presented in the second report was designed to weight the 
experimental data so that they better represent the application. More specifically, data that 
does not have as direct of an impact on the target application was weighted less. This 
modification uses a sensitivity analysis to define and remove those data (or linear 
combination of data) from the validation experimental data set for which the target 
application is not sensitive (see Hills and Trucano, 2001). This has the effect of reducing 
the impact of such data on the validation metric. An example was presented relating a 
two-dimensional shock application to the one-dimensional shock physics data used for 
model validation. 
 
The third report (Hills and Trucano, 2002) focused on the application of the Maximum 
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Likelihood method to the non-application based validation metrics developed in the first 
two reports. The use of Maximum Likelihood allows highly nonlinear problems with 
non-normally distributed uncertainties in the measurements and the model parameters to 
be more easily analyzed.  
 
The focus of the present work is to further develop the relation between component or 
unit level validation experiments and more complex and integral system level target 
applications. Specifically, we investigate the relationship between decision variables that 
are important to the target application and the measurements obtained from the suite of 
supporting validation experiments. In this context, we consider a decision variable to be a 
variable that is important to the application and which is predicted from the model. It is 
that quantity that defines whether a design is successful. A decision variable may be the 
temperature in a component, the probability that a component will detonate, or the stress 
at a critical location. It is not unusual for the decision variable to be different than the 
quantities measured in the validation experiments. For example, one may not be able to 
directly measure maximum stress in a component because the location of maximum stress 
is not accessible.  
 
How do we then tie quantities measured in the validation experiments to the decision 
variables for the target application and how do uncertainties in these measurements 
impact our ability to test model validity for the system level predictions? Here we study 
several approaches. All are based on first order sensitivity analysis. In the first, we look at 
the sensitivity of the decision variables to the uncertain model parameters, and use the 
results to define how we should weigh the validation measurements so that linear 
combinations of the measurements that are not important to the decision variables are 
given zero weight. This approach is top down in the sense that we modify the validation 
metric at the unit level, based on a sensitivity analysis of the target application. This 
approach was introduced in Hills and Trucano (2000a) and will be extended to non-
normal distributions in the model parameters. 
 
The remaining approaches look more thoroughly at the relationship between a suite of 
validation experiments and the target application decision variable. These approaches 
depend on identifying those model parameters that are important to the target application, 
be they uncertain or not. The weights for the validation measurements are then 
determined so that sensitivities of the target application decision variable to the important 
model parameters are reflected by the weights that are put on the measurements. These 
approaches are sufficiently general that different levels of uncertainty in the parameters 
for the models for the experiments, and for the target application, can be accommodated. 
These approaches also allow us to determine (to first order) whether the validation 
experiments adequately cover the important physics (represented through the physical 
parameters) of the target application. While these approaches are conceptually more 
difficult than the first, they require much of the same information and are not much more 
difficult to implement. The majority of work presented in this document will focus on 
these more general approaches. 
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2.0 Theory 
 

2.1 Background 
 
In this chapter, we develop methodology to relate validation experiments to the target 
application. The methodology is based on first order sensitivity analysis of the validation 
experiments and the target application. The analysis is used to provide weights to be 
applied to the measurements to better represent the application. These weights influence 
the comparison of model results with experiments and the inferences that can be drawn 
from them. The first approach presented is an extension of that developed by Hills and 
Trucano (2001) and is based on projecting the measurements into a subspace relevant to 
the target application. We call this approach the projection method. Here we extend the 
projection method to handle non-normal distributions in the model parameters. The 
second approach provides a more comprehensive look at whether the suite of experiments 
adequately covers the anticipated application and allows us to evaluate the uncertainty in 
the resulting application decision variables due to the uncertainty in the model validation 
measurements. The third approach is similar to the second, but accounts for model 
parameter uncertainty in developing the weights. We will refer to the second two 
approaches as representative approaches since we develop the weights so that the 
resulting linear combinations of measurement best represent the target application. All of 
these approaches can be used to develop a validation metric (Trucano, et al., 2001). We 
provide several examples of such metrics. Before we begin the development, we discuss 
the basic ideas and assumptions behind these approaches.  
 
Figure 2.1 illustrates the basic problem we face. We have some target application for 
which we wish to test the validity of a model. The model for this application is composed 
of a system of sub-models which each represent some subset of the physics for the target 
application. For example, the physics for a target application may include conduction heat 
transfer, thermal contact resistance, convection, radiation heat transfer, and phase 
changes. We represent the system level target application by the graphic labeled System 
in Figure 2.1.  
 
In contrast, we often cannot perform experimental model validation (Trucano, Pilch and 
Oberkampf, 2002) at the system level due to expense, environmental impact, safety, or 
simply the inability to run controlled experiments at the system level. In these cases, we 
must perform validation experiments on sub-system levels that can be accomplished 
under more carefully controlled and monitored conditions. Here we call these 
experiments unit level validation experiments. For this approach to work, we must have 
some assurance that physical testing at the unit level fully represents the physics 
important at the system level. In terms of the Figure 2.1, the unit level experiments are 
represented by the building blocks that combine to represent experimental validation of 
the necessary physics of the target application or system.  
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Figure 2.1: Unit to System Level Validation 

 
 
From the figure, we see that the individual building blocks or unit level validation 
experiments may not be independent. There may be overlap between several of the unit 
experiments. For example, it is very difficult to design unit level validation experiments 
for radiation heat transfer or thermal convection that do not also contain heat conduction. 
Thus, we may have a suite of unit level validation experiments that all contain some form 
of heat conduction. The overlap in physics between validation experiments is normal.  
However, we do want our unit level experiments to combine to cover all of the physics 
deemed relevant to our target application. In terms of Figure 2.1, this is represented by 
“Combined Results.” We do not want any holes in the graphic labeled Combined Results. 
 
A second issue that we must deal with is to decide how the data from the unit level 
experiments should be combined to best assess the validity of the model for our target 
application. If the performance of the model for the target application is especially 
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sensitive to a particular sub-physics, say thermal radiation, then we expect that we may 
want to weight the results from the thermal radiation validation experiments more 
heavily. We also want to know what level of uncertainty we can tolerate in the validation 
experiments (both in the measurements and in the model parameters) so that the results 
remain useful for a target application validation.  
 
Figure 2.2 illustrates issues related to uncertainty. We begin with the part of the figure 
labeled Unit Experiments. Note that we show probability density clouds for both the 
uncertainty in the model parameters α used to model the validation experiment or 
experiments, and the uncertainty in the measurements γ. Once we define a procedure to 
combine these experiments to best reflect the target application, we would like to estimate 
what the corresponding uncertainty is in the target application, based on our models for 
the system physics and the uncertainties in the validation measurements and the 
parameters. We wish this uncertainty to be less than the acceptable uncertainty in the 
target application. If, in fact, the uncertainty is larger in our combined results for the 
target application than is acceptable for the target application, then clearly our validation 
experiments are not of sufficient resolution to support our target application validation. 
The system level target application is also shown in Figure 2.2. We denote the critical 
target application predicted decision variable by d. This variable may be a scalar or a 
vector. Note that we have included the uncertainty in the system model parameters and 
shown the effect of the uncertainty in d (a scalar in this case). We have also shown the 
uncertainty in the model parameters for the unit experiments and the measurements, and 
included the effect in the combined results for the decision variable d. We intentionally 
showed the uncertainty (represented by the spread in the depicted probability density 
function for d) in the model parameters for the unit/validation experiments as less than 
for the application. Generally, we can more carefully control (hence less uncertainty) 
these parameters for the model validation experiments than we can for the application. 
This is desirable because we want the combined results from the unit experiments to have 
less uncertainty (narrower PDF) than the acceptable level of uncertainty for the target 
application as a basic principle for designing unit validation experiments.  
 
How do we address the above issues? Here we develop several approaches based on a 
first order sensitivity analysis for the models for the validation experiments and for the 
target application. While these approaches do have limitations for highly nonlinear 
problems where we expect to have to go beyond first order sensitivity analysis, they do 
represent a very good first step that can be implemented within the current framework of 
software development at Sandia National Laboratories. We suggest that accounting for 
this linkage between the unit level experiments and the target application, to first order, is 
much more desirable than not accounting for this linkage at all. The first order analysis 
will insure that the physics that the sensitivity analysis tells us is more important to the 
target application will be given greater weight in the analysis. 
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Figure 2.2: Uncertainty in Unit to System Level Validation  

 

γ2 

α1 

α2 

γ1 

γ2 

d 

P
D
F 

Unit Experiments 

α1

α2 

d 

P
D
F 

System Application 



     

 

 19 
 
  
 
 

2.2 Theory 
 
We begin with a list of assumptions common to all three approaches. 
 

1. We assume that it is practical to perform first order uncertainty analysis of the 
system level application and each of the unit level validation experiments for the 
important model parameters (i.e., those whose effect on the application is believed 
to be significant). 

 
2. We assume that a representation of first order dependencies between various 

physical phenomena is adequate at the unit level to represent the target 
application. If we have a zero first order sensitivity, but a non-zero second order 
sensitivity, then the present analysis will not properly account for this dependence. 

 
3. We assume that we have adequate characterization of the uncertainty in the 

experimental measurements for the validation experiments. Specifically, we 
assume that we know the form of the probability distribution, and have estimated 
values of all of the statistical parameters for the measurements except the statistic 
describing central tendency of the distribution (i.e., mean, median, mode). This 
assumption is required late in the analysis for the development of a validation 
metric. This assumption is not required for the first order sensitivity analysis, 
which addresses coverage of the target application by the unit level experiments 
and estimates the covariance of the reconstructed decision variable. 

 
The effect of uncertainty in the model parameters is ignored in the first and second 
approaches we discuss to evaluate the measurement weights. This uncertainty will be 
accounted for by a third approach. We begin with our model for the target application: 
 
 )(αGd =  (2.1) 
 
where d is a vector of decision variables, G is a model for the target application, and 
αααα are the important model parameters and/or calibration parameters and/or important 
model quantities (see discussion below).  
 
A decision variable for the target application is a model predicted quantity critical to the 
success of the target application, i.e., a variable that we use to decide whether the target 
system was successful at meeting its design goal. Examples include temperature in a 
temperature sensitive critical component, depth of penetration of a projectile, or the 
probability of detonation of an explosive device. Note that a decision variable for a target 
application may or may not correspond to the quantities measured during validation 
experiments. For example, we may measure the velocity of a foam thermal decomposition 
front in a one-dimensional experiment whereas we may really be interested in the thermal 
protection afforded by the foam on a component in a system. While front speed 
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measurements are a good indicator of the predictive ability of a model, and can be 
measured non-invasively using radiography, they are not a direct measure of the thermal 
environment of the component. However, front speed measurement may be a very 
appropriate measure if the location of the front (or the arrival time of the front at the 
component) significantly impacts the thermal environment of the component.  
 
Our target application is the particular (complex) system to which we will apply our 
model. In (2.1), we represent this model as a function of the vector of important model 
parameters and/or calibration parameters and/or parameterization of important model 
quantities αααα. We consider the model parameters as those parameters that appear in our 
constitutive models for the application, for example. Whereas, we consider the calibration 
parameters as those parameters that may appear in non-physics based correction 
calibrations for sub-models. We also extend this latter definition to include 
parameterization of important model quantities that are important to the target application 
but not represented by the collection of model parameters. Note that in most cases, it is a 
practical consideration that our constitutive parameters are also obtained from calibration 
procedures and therefore also often possess uncertainty. While there may be differences 
in the source of the various parameters, the methods presented here allow for similar 
treatment, and we show both of these parameter types as components in the single 
parameter vector αααα.    
 
We are now ready to write a expression similar to (2.1) for our unit level validation 
measurements. We write the model predictions for a set of unit level measurements as 
 
  )(αFγ =  (2.2) 
 
where γγγγ represents the prediction vector of validation measurements from a suite of 
experiments. We emphasize that these measurements may be from suites of experiments 
that involve different experimental apparatus. Each suite may test the model for different 
physics. F represents a vector of models for the various validation experiments and αααα a 
vector of model parameters. We intentionally and reasonably use the same vector for the 
parameters in Eq. (2.2) as we did in (2.1). Note that the vector of parameters αααα in Eq. 
(2.1) represents the vector of all parameters of significance to the target application. If our 
validation experiments span the physics of the target application, then we should expect 
that all of the model parameters of importance to the target application will also be 
important in the suite of validation experiments. In addition, we may expect that 
individual validation experiments may not be sensitive to the full set of model 
parameters, but desire the suite of validation experiments to be defined such that they 
cover the entire set of parameters as required for the target application.  
 
The vector of model parameters is important to the present development since it provides 
the linkage to relate the validation experiments to the target application. The choice of 
which parameters to include in this set will require judgment.  
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We desire to weight the unit validation experimental data to best represent the target 
application. Here we evaluate the weighting through a first order sensitivity analysis. We 
begin by applying a Taylor’s series expansion to Eq. (2.1) and retaining the first order 
terms. 
 
 ααGd α ∆∇≈∆ )(  (2.3) 
 
The gradient term is evaluated at the anticipated values for the target application. 
Repeating this process for Eq. (2.1) gives 
 
 ααFγ α ∆∇≈∆ )(  (2.4) 
 
At this point, we can take two approaches. Both approaches are based on evaluating 
weights of the measurement data to better represent the target application. The first, based 
on that presented by Hills and Trucano (2001), is to look at those directions in the 
validation space that are not important to the decision variable, and remove the effect of 
these directions. Here we extend this approach to non-Gaussian model parameters. The 
second approach is to take that weighted combination of the measurement data that best 
represents the decision variable for the target application. The second approach not only 
throws out non-important directions in the validation space, but it also weights the 
remaining directions in a fashion appropriate to the target application decision variable. 
We begin with the first approach. 
 

2.2.1 Projection Method 
 
In this development, we restrict our attention to a single decision variable. For this case, 
we rewrite Eq. (2.3) as 
 αg ∆≈∆ Td  (2.5) 
where 
 ( )T)(αGg α∇=  (2.6) 
 
 
We would like to determine those directions in the parameter space that are not important 
to the decision variable. Denote this direction by b and require that b satisfy the 
following: 
 
 0d T =≈∆ bg  (2.7) 
 
We see that b is orthogonal to the sensitivity vector g for the target application. This 
direction is illustrated conceptually in the upper right part of Figure 2.3. While the 
direction of b is uniquely defined by Eq. (2.7) (assuming g is non-zero), the magnitude of 
b is arbitrary. Since b will be normalized later, the choice of magnitude of b is arbitrary at 
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this stage in the development. Given a b, we can map this direction into validation space 
using the sensitivity matrix found previously for the validation experiments. 
 
  bXbFβ α =∇=  (2.8) 
 
This direction is illustrated conceptually in the lower part of Figure 2.3. Since 
discrepancies between the model predictions and the experimental observations do not 
have an impact on the application decision variable along this direction, we do not need 
to measure the prediction-measured differences along this direction. To remove this 
direction, we project the validation space into a hyperplane orthogonal to ββββ. The 
projection matrix that projects points in the n-dimensional space into the desired n-1 
dimensional hyperplane is given by (Strang, 1976) 
 
 TT ββββββββββββββββ 1( −−= )IP  (2.9) 
 
where I is the identity matrix. Note that application of the above projection to ββββ itself  (or 
some multiple of ββββ) should result in zero: 
 

 
O

)
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=−=
−=

−=
−

−

ββββββββ
ββββββββββββββββββββββββ

ββββββββββββββββββββββββ

)((
)((

1

1

T

T

 (2.10) 

 
We see that this subspace ignores the direction in the n-dimensional validation space that 
corresponded to no change in the application decision variable. We can now use the 
projection P to project quantities in our n dimensional validation space into the n-1 
subspace,  
 
 γPγ =p  (2.11) 
 
 
where the p superscript denotes a projection into the subspace. This projection was 
developed in Hills and Trucano (2001) and was demonstrated using shock physics data. 
This projection weights the measurements so that the directions in the validation space (at 
least to first order) that are not important to the decision variable are ignored. In the 
following section, we extend this development to not only ignore the non-important 
directions, but to weight the remaining directions to best reflect the application. 
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Figure 2.3: Model Validation Sub-Space as Defined by an Application Decision 

Variable 
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2.2.2 Representative Method: Uncertainty in Measurement Only 
 
Our second (and third) approach not only ignores those directions in the validation space 
that are not important to the system level target application, but also weights the 
remaining directions relative to their importance. We do this by choosing the weights for 
the vector of measurements from the validation experiments so that they have the same 
sensitivity to the important model parameters αααα as do the target decision variables. We 
denote this weighting matrix by A (to contrast it from the P matrix defined in the 
previous section) and require the following: 
 
 dγA ∆≈∆T  (2.12) 
So (see Eqs. (2.3) and (2.4)) 
 
 ααGααFA αα ∆∇≈∆∇ )()(T  (2.13) 
or 
 
 ( ) 0ααGAαF αα ≈∆∇−∇ TTT ))(())((  (2.14) 
 
Since ∆αααα can take on any value (i.e., we have not restricted ∆α α α α to a particular direction), 
we must have that 
 
 TT ))(())(( αGAαF αα ∇≈∇  (2.15) 
 
Note that the above equation defines the weighting matrix A such that the weighted 
measurements and the decision variable have the same sensitivity to the important model 
parameters.  Solving for A, we can write the covariance of ∆d in terms of the covariance 
matrix of ∆γ∆γ∆γ∆γ (see Hills and Trucano, 2000a): 
 
 cov(d) = AT cov(γγγγ) A (2.16) 
 
Equations (2.15) and (2.16) provide us with the following 3 pieces of important 
information. First, for the left and right sides of Eq. (2.15) to be similar, the rows of 

)(αFα∇ must span the rows of )(αGα∇ . In other words, the sensitivity of the unit level 
validation experiments to the parameters αααα must span the target application sensitivity to 
the same parameters. If we have an incomplete set of validation experiments, then rows 
of )(αFα∇ will not span the target application. Secondly, Eq. (2.15) tells us in part how to 
estimate A, the weighting of our unit level measurements, so that the weighted 
measurements have the same sensitivity to the important model parameters as the 
decision variable. Finally, given an estimate of A, we can use Eq. (2.16) to evaluate the 
sensitivity of our reconstructed decision variable at the system level to small changes in 
our measurements. More specifically, this expression allows us to evaluate whether the 
uncertainty in the validation experiments is sufficiently low to resolve the validity of the 
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systems level model for the target application. These observations are best demonstrated 
through the examples in the following chapter. 
 
How do we actually evaluate the weighting matrix A? Note that in most cases, the 
number of model parameters will be different than the number of measurements. Thus, 
the matrix on the left hand side of Eq. (2.15) will not be square. For the case of fewer 
independent measurements than model parameters, the matrix on the left hand side will 
generally not span the space required to represent the right hand side. In other words, our 
validation experiments do not have sufficient data of the right type to represent the target 
application as discussed previously. In this case, we cannot proceed further. We have to 
instead reconsider the design of the validation experiments. Another case is when we 
have more measurements than model parameters. For this case, we will have more 
unknown weights than we have equations and Eq. (2.15) is underconstrained. There are 
an infinity of weighting vectors (or matrices) that lead to solutions of Eq. (2.15). How do 
we choose a desirable solution? Eq. (2.16) provides us some guidance. Since we wish to 
maximize our ability to resolve the decision variable for the target application, we should 
choose the solution from the infinity of solutions that minimizes the uncertainty in the 
reconstructed decision variable or variables defined by the covariance given by Eq. 
(2.16).  
 
First, consider a single decision variable d (or a component in a vector of decision 
variables).  Eqs. (2.15) and (2.16) become 
 
 gaαFα ≈∇ T))((  (2.17) 
 
 σd

2 = aT cov(γγγγ) a (2.18) 
where 
 gαGα =∇ T))((  (2.19) 
 
Note that we replaced the cov(d) in Eq. (2.16) with variance of d (i.e., square of the 
standard deviation)  since we are considering a single decision variable. Note that A and 

)(αGα∇  are now vectors (denoted by a and g) since we are dealing with a single decision 
variable. We wish to choose a such that σd

2 is minimized, given the constraint defined by 
Eq. (2.17). To accomplish this constrained minimization, we use a vector of Lagrange 
multipliers λλλλ as follows. Find the a and λλλλ that minimizes 
 
 ( )gaαFλaγa α

T −∇+= TT ))(()cov(min L  (2.20) 
 
Note that since we are taking Eq. (2.17) to be true, the a and λλλλ that minimizes 
Eq. (2.20) also minimizes Eq. (2.18). The minimum occurs at 
 
 λαFaγ αa ))(()cov(0 ∇+==∇ L  (2.21) 
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So 
 
 ( ) λαFγa α ))(()cov( 1 ∇= −  (2.22) 
 
Using (2.22) in (2.17) gives (assuming an equality) 
 
 ( ) gλαFγαF αα =∇∇ − ))(()cov())(( 1T  (2.23) 
 
So 
 
 ( )( ) gαFγαFλ αα

11T ))(()cov())((
−− ∇∇=  (2.24) 

 
Note that if the validation experiments do not span the space of the target application 
decision variable, then the inverse of the product of the three matrices in Eq. (2.24) will 
not exist. Using (2.24) in (2.22) gives 
 
 ( ) ( )( ) gαFγαFαFγa ααα

11T1 ))(()cov())(())(()cov(
−−− ∇∇∇=  (2.25) 

 
Eq. (2.25) represents the weighting of the validation measurements that minimizes the 
variance of the reconstructed decision variable. We can use Eq. (2.25) to find an a for 
each decision variable d in a vector of decision variables. Thus, we can handle a vector of 
decision variables, component by component as follows (see Eqn. (2.19)): 
 
 ( ) ( )( ) T11T1 ))(())(()cov())(())(()cov( αGαFγαFαFγA αααα ∇∇∇∇=

−−−  (2.26) 
 

2.2.3 Representative Method: Uncertainty in Measurements and Model 
Parameters 
 
Here we repeat the previous development, but explicitly account for uncertainty in the 
model parameters for the validation experiments and for the target application. We begin 
by expanding the argument list of Eq. (2.1) and (2.2) to account for uncertainty in the 
model parameters. 
    γγγγ = F(αααα, ααααv) (2.27) 
 
where αααα represents the model parameters that represent the important physics that one 
wishes to capture in the target application, and ααααv represents the model parameters that 
contain uncertainty (treated as random variables).  αααα and ααααv may be vectors of the same 
parameters, different parameters, or some of each. The lengths of these two vectors need 
not be the same. Note that components in both of these vectors may represent the same 
parameter. In this case (i.e. a parameter represents important physics and contains 
uncertainty), we can take αααα as an expected value and ααααv as a perturbation from the 
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expected value due to uncertainty. This allows us to separate the sensitivity of a model 
prediction to a parameter that represents physics (e.g., the impact thermal conductivity 
has on a temperature measurement) and the sensitivity of this parameter to uncertainty in 
this parameter. This distinction is important if we wish to represent the sensitivity of the 
model prediction to the parameter (important if we are to represent the physics), whether 
or not the parameter is uncertain.  Note that for the case of an important model parameter 
possessing uncertainty, the expected value of ααααv is zero since ααααv represents a perturbation 
due to uncertainty from the expected value of αααα. 
 
We write a similar expression for the target application model. 
 
    d = G(αααα, ααααa) (2.28) 
 
ααααv and ααααa may be different vectors of different lengths. We do not require the uncertain 
parameters to be the same for the validation experiments and the target application. Even 
if the same parameters are uncertain in both cases, the uncertainties will generally be 
different since validation experiments typically are more carefully controlled. We will 
provide an example in the next chapter of a case where the uncertainties in the model 
parameters are greater for the target application than they are for the model validation 
experiments.  
 
We now apply a first order sensitivity analysis 
 
 vvv αααFαααFγ αα ∆∇+∆∇≈∆ ),(),(

ν
 (2.29) 

 
 aaa a

αααGαααGd αα ∆∇+∆∇≈∆ ),(),(  (2.30) 
 
and take a weighted combination of the predicted measurements to best represent the 
target application.  
 

 
aaa

vvv

a
αααGαααG

αααFAαααFA

αα

αα

∆∇+∆∇=

∆∇+∆∇

),(),(

),(),( TT
ν   (2.31) 

 
As discussed in the paragraph following Eq. (2.27), we take α α α α as expected values and ααααv 
and ααααa as perturbations from the expected values due to uncertainty. Taking the expected 
value of Eq. (2.31) leads to 
 
 ( ) ( )TT ),(),( av ααGAααF αα ∇=∇   (2.32) 
since the expected value of a random perturbation from its expected value is zero and 
since we hold the gradient terms at fixed values for the parameters (i.e., a first order 
analysis). Note that Eq. (2.32) is the same as Eq. (2.15). For the case that the columns of 
the gradient term of the left hand side of Eq. (2.32) do not span the space of the columns 
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of the right side, the validation experiments do not span the space of the target application 
decision variables. For the case that there are as many parameters as unknowns with the 
rank of the left hand gradient matrix equal to the number of unknowns, a unique A exists.  
 
 ( )( ) ( )T1T ),(),( av ααGααFA αα ∇∇= −   (2.33) 
 
The remaining case is when the left matrix does span the space of the RHS, but we have 
more measurements than model parameters. In this case, the system is underconstrained 
and we have the opportunity for additional constraints. As in the previous section, we will 
choose the A that satisfies Eq. (2.32) while minimizing the uncertainty in the 
reconstructed decision variable sensitivity as measured by the variance. This has the 
effect of maximizing our sensitivity to uncertainty in the differences between model 
predictions and experimental observations, weighted in a fashion appropriate for the 
decision variable. As before, we accomplish this through Lagrange multipliers. We 
minimize the following: 
 
 ( )TTT )),()),(()cov(min vvL ααGAααFλAγFA αα

T ∇−∇+−=  (2.34) 
 
Using the procedures presented in the previous section leads to the following (see Eq. 
(2.26)): 
 

 
( )

( )( ) T11T

1

)),(()),(()cov()),((

)),(()cov(

avv

v

ααGααFγFααF

ααFγFA

ααα

α

∇∇−∇

∇−=
−−

−

 (2.35) 

 
where the covariance in the differences between the model predictions and the 
experimental observations is approximated by (see Hills and Trucano (1999)) 
 
 T),()cov(),()cov()cov( vvv vv

ααFαααFγγF αα ∇∇+=−  (2.36) 
  
Given the A defined by Eq. (2.35), we can evaluate the uncertainty in the reconstructed 
decision variable difference as follows. Take the resulting AT times Eq. (2.29), and using 
the results in Eqs. (2.30) and (2.31), gives 
 
 aavv av

αααGαααFAγAd α ∆∇+∆∇−∆≈∆ ),(),(TT
α  (2.37) 

 
Eq. (2.37) can be written as  
 

 [ ]
















∆
∆
∆

∇∇−≈∆

a

vav av

α
α
γ

ααGααFAAd α ),(),(TT
α  (2.38) 
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Assume that our uncertainties in the measurements are independent of the uncertainties in 
the validation model parameters, which in turn, are independent of the uncertainties in the 
target application model parameters. In this case, we can estimate the total uncertainty in 
the decision variable for the reconstructed model as follows: 
 

 
T

TTTT

)),()(cov(),(

)),()(cov(),()cov()cov(

aaa

vvv

aa

vv

ααGαααG

ααFAαααFAAγAd

αα

αα

∇∇+

∇∇+=
 (2.39) 

 
Eq. (2.39) defines the uncertainty in the reconstructed decision variable vector; given the 
uncertainty the model parameters for the validation experiments, the uncertainty in the 
model parameters for the target application, and the uncertainty in the validation 
measurements. Note that the last term in Eq. (2.39) represents the uncertainty in the target 
application model prediction of the decision variable. Thus, the uncertainty in the 
reconstructed variable will be greater due the added uncertainties in the validation 
measurements and in the model parameters for the validation models.  

2.3 Validation 
 
The previous development uses first order sensitivity analysis to weight the 
measurements to better represent the target application decision variables. The only 
assumptions we made as to the structure of the uncertainty is the covariance matrices for 
the measurements, validation model parameters, and application model parameters are 
known; and the first and second moments of all probability density functions considered 
(i.e., expected value and variances) exist. We have not assumed functional forms for the 
probability density functions up to this point. 
 
How should we use this development to define validation metrics that best reflect the 
application? Before we go further, we make the following observations: 
 

1. The acceptable level of uncertainty in the target application decision variables 
should be a significant factor in defining validation metrics. Here we focus on a 
specific application over a limited range of operational conditions and do not 
address the validity of the model for all possible applications.  

 
2. The sensitivity of the target application decision variables to the validation 

experiments should be explicitly accounted for. For example, if our target 
application is much more sensitive to forced heat convection in a certain 
parameter range than it is to radiation heat transfer, we should weigh the results 
from the validation experiments that address heat convection in that parameter 
range more heavily. Furthermore, the sensitivity of the reconstructed decision 
variables to particular validation experimental measurements should be used to 
evaluate whether the validation experiments are performed at sufficient accuracy 



     

 

 30 
 
  
 
 

to resolve the reconstructed decision variable relative to the acceptable level of 
uncertainty for the target application. The representative approach developed in 
previous sections allows us to do this.  

 
3. If we can define an acceptable level of uncertainty in the reconstructed decision 

variables, then we have some flexibility in defining acceptable levels of 
uncertainty over the suite of validation experiments. For example, we may find 
that if somewhat uncertain validation experiments are accompanied by validation 
experiments with little uncertainty, the joint uncertainty may be sufficiently small 
relative to the acceptable level of uncertainty defined for the target application 
decision variables. 

 
4. We can ask several questions concerning the validity of the model, given the 

experimental observations. First, we can ask whether the experimental 
observations are likely, given the models for the validation experiments. This first 
question does not account for the anticipated target application.  

 
5. Secondly, we can ask whether the weighted combination of the measurements is 

likely (weighted in a fashion to represent the decision variable of the target 
application), given the suite of models for the validation experiments and the 
target application. This second approach asks a different question than the first. It 
does not require that the data from the unit level experiments be likely, only that 
the weighted measurements be likely. On the other hand, this approach does 
require that those measurements from the validation experiments that are 
important to the target application be likely. In fact, we could have the case where 
the weighted measurements are not likely, but the measurements at strictly the 
unit level are. For example, we may have very small differences between the 
predictions and the measurements that are not important to the application, but 
larger differences in those that are important. Validation at strictly the unit level, 
using non-application based metrics, will not be able to make this discrimination. 
The weighted approach presented here can.  

 
6. Lastly, we can ask whether the weighted combination of measurements is within 

the uncertainty allowed for the application, even though the weighted combination 
is unlikely relative to the uncertainty in the validation experiments. This approach 
assumes that there is more allowable uncertainty in the decision variable than in 
the reconstructed decision variable. This last approach is dangerous. If the 
weighted measurements are not likely, then the validity of the models are 
questionable. In this case, we really have to question the validity of the 
reconstructed decision variable and the validity of any predictions made thereof 
since they are based on the models. In the present work, we will restrict our 
attention to the first two approaches. 

 
In the present work, we focus on developing validation metrics, assuming that the models 
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are correct, or at least approximately correct. If the target application model is incorrect, 
then we run the risk that the weights chosen for the validation metric at the unit level will 
be incorrect. However, while the weighting may not be exactly correct, the weights 
provided by a target application model that roughly approximates the application physics, 
will provide a much better validation metric than ignoring the target application all 
together.   

2.3.1 Metrics 
 
Consider a set validation measurements γγγγ, the corresponding covariance matrix cov(γγγγ), 
the model predictions of the measurements F(αααα, ααααv), and covariance matrix of the 
uncertain model parameters )cov( vα . We are interested in developing a metric for the 
weighted linear combination of the differences where the weighting is given by A (we can 
simply substitute P for A in the following derivation for the projection method). The 
weighted linear combination of differences is given  
 
 ∆d = AT [γγγγ - F(αααα, ααααv)] (2.40) 
 
The covariance matrix for this linear combination of differences is given by (see Eq. 
(2.39)) 
 
 TTTT )),()(cov(),()cov()cov( vvv vv

ααFAαααFAAγAd αα ∇∇+=  (2.41) 
 
Note that we have not included the uncertainty for the target application model 
parameters. We are interested in consistency between the weighted combination of 
measurements and the validation experiments without adding the uncertainty in the target 
application model parameters. However, accounting for this uncertainty is straight 
forward. One just has to restore this term in Eq. (2.41). Collecting terms in A in Eq. 
(2.41) gives 
 
 ( )AααFαααFγAd αα

TT )),()(cov(),()cov()cov( vvv vv
∇∇+=  (2.42) 

 
At this point, we ask whether the differences between the weighted combination of 
measurements and model predictions (i.e., Eq. (2.40)) is significant relevant to the 
uncertainty in the weighted combination of differences as represented by (2.42). Before 
we can define significance, we need to know the functional form for the probability 
distribution for the uncertainty in ∆d. 
 

2.3.2 Normal Distributions 
 
If the measurements and the model predictions are normally distributed, then a linear 
combination of these differences (Eq. (2.40)) will be normally distributed with the 
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covariance defined by Eq. (2.42). For the case of normally distributed differences, we use 
the following statistic (see Hills and Trucano, 2001): 
 
  ddd ∆∆= + )(covT2r  (2.43) 
  
The + superscript indicates a pseudoinverse. This is presented in Hills and Trucano 
(2001) for the case of A given by the projection matrix P. In the case of the projection 
matrix approach, the rank of the covariance matrix is less than full rank since we remove 
directions of no importance to the decision variable. For the representative methods, 
cov(d) will also not be of full rank for the case of more measurements than important 
model parameters, αααα. In this case, cov(d) will generally have a rank equal to the number 
of important parameters for the target application. As such, we take the inverse of cov(d) 
in just that subspace spanned by cov(d), and set the remaining contributions to zero. This 
is accomplished through the use of the pseudoinverse of cov(d). Specifically, we use a 
singular value decomposition and remove those directions for which the singular values 
are zero (see Hills and Trucano, 2001). Our metric thus only measures differences in the 
direction of importance to the target application decision variable. 
 
For normally distributed ∆d, the r2 statistic is distributed as the χ2(n) distribution with n 
degrees of freedom were n is the rank of the covariance matrix. To differentiate the case 
for the rank of the covariance matrix that is different from its dimension, we use the 
symbol n+ to represent degrees of freedom. Given a value for r2 from our measurements, 
we can evaluate the cumulative probability (significance) that a set of measurements give 
an r2 value larger than observed, given that the model is valid. 
 
 P(χ2(n+) > r2) (2.44) 
 
If the significance is small, we must question the validity of the model or the validity of 
the probability models used to evaluate this statistic, or both. A small significance 
suggests that we should first revisit the characterization of the uncertainties in the 
parameters to ensure that we did not underestimate their uncertainty (a fairly common 
problem as these estimates are often mistakenly based on the characterization of precision 
rather than accuracy) and then revisit the suitability of the model and it’s boundary and 
initial conditions. 

2.3.3 Mixed Distributions 
 
When the probability density functions for the predictions are non-normal, the difference 
between prediction and measurement can be difficult to characterize. This is especially 
true if the computational cost of a function evaluation F(αααα, ααααv) is large and if the number 
of predicted measurements is large. An alternative approach is to use Maximum 
Likelihood to obtain a best estimate of the true model parameters and then evaluate the 
cumulative probability that the probability density of the estimated parameters are less 
than the values estimated. This approach was developed in Hills and Trucano (2002) and 
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was shown to give the same significance as the approach outlined under Section 2.3.2 for 
normally distributed parameters and measurements, with models locally linear in the 
parameters. 
 
The Maximum Likelihood approach used by Hills and Trucano (2002) evaluates the 
model parameters ααααv that maximize the joint probability density 
 
 PDF(γγγγ, <γγγγ>) PDF(ααααv, <ααααv>) (2.45) 
 
subject to the constraint 
 <γγγγ> = F(αααα, ααααv) (2.46) 
 
The <> represent expected value. We can use other measures of central tendency such as 
median or mode. Note that we are assuming a valid model will provide predictions, when 
evaluated at the true value of the model parameters, that agree with this measure of 
central tendency of the measurements (see Hills and Trucano, 2002). Here we modify the 
approach and incorporate the weighted measurements. While we show the development 
for the matrix A, the same development applies to the matrix P. We wish to maximize 
 
 PDF(Aγγγγ, <Aγγγγ>) PDF(ααααv, <ααααv>) (2.47) 
 
subject to the constraint given by Eq. (2.46). The known parameters in Eq. (2.47) are 
<ααααv> from our knowledge of the distribution of the uncertain model parameters, and Aγγγγ 
which follows directly from our measurements and weighting matrix. A function 
evaluation routine must be provided to the optimization routine to evaluate the objective 
function given a guess for the parameter vector ααααv. The function routine does the 
following: 
 

1. Given a guess for the parameter vector ααααv, and the appropriate values for αααα (note 
that we are assuming the uncertain parameters are ααααv and that αααα is known exactly), 
we evaluate <γγγγ> from our model, Eq. (2.46). 

 
2. Given <γγγγ>, our observed measurements (containing error) γγγγ, and our a-priori 

knowledge of <ααααv>, we can evaluate the negative of the corresponding joint 
probability density from Eq. (2.47). We return the negative since our optimization 
routine minimizes, when, in fact, we wish to maximize. 

 
3. The previous steps are repeated for different iterations on the parameter values ααααv 

until the min(-PDF(Aγγγγ, <Aγγγγ>) PDF(ααααv, <ααααv>)) is found. 
 
Once we have our best estimate for ααααv, we use this estimate to define a validation metric 
that is appropriate for our target application. If our model is valid, our uncertainty will be 
due only to uncertainty in the model parameters and the experimental measurements. The 
PDF for our uncertainty is defined by (2.47) at our maximum likelihood estimate for ααααv. 
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We would like to evaluate the cumulative probability of obtaining this probability 
density, or smaller, to evaluate the significance of the observed measurements, given that 
the model is valid. Here we use a Monte Carlo analysis (Hills and Trucano, 1999). 
 
The Monte Carlo analysis used here is fairly straightforward and only requires one model 
evaluation.  
 

1. Evaluate the <γγγγ> from Eq. (2.46) using the ααααv obtained from the optimization 
procedure. 
 

2. Generate a γγγγ from the PDF(γγγγ, <γγγγ>), evaluate Eq. (2.47) using the estimated ααααv. 
 

3. Repeat step 2 multiple times and count the number of times the value for the joint 
PDF evaluated in step 2 is less than the PDF obtained from the optimization 
procedure. If this process is repeated a sufficient number of times, the % of times 
the joint PDF is smaller than that estimated from the optimization process 
approximates the cumulative probability (i.e., significance) that a valid model 
would have measurements this far or further from those observed. 

 
As was shown in Hills and Trucano (2002), this Maximum Likelihood approach and that 
presented in the previous section provides the same cumulative probability for normally 
distributed measurements and validation model parameters, for a model that is locally 
linear in the parameters.  
 



     

 

 35 
 
  
 
 

3.0 Example Applications 
 

3.1 Introduction 
 
In this chapter, we work through a series of examples to demonstrate the use of the 
methodology presented in the previous chapter. These are presented in the order of simple 
to complex and address issues of coverage of the target application by the validation 
experiments, sensitivity of the reconstructed decision variable to the uncertainties in the 
validation experiments, and the construction of application-based validation metrics. 

3.2 Simple Heat Conduction: 2 Measurements 
 
Consider the one-dimensional thermal heat conduction problem illustrated in Figure 3.1.  
 
 

 
 
 

Figure 3.1: Example 1: Heat Conduction 
 

 
We assume the validation experiment and the target application have the same geometry 
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and materials and that there are no uncertainties in the geometry or in the material 
properties.  For the validation experiment, we assume that we have internal temperature 
measurements and no measure of flux on the surface. In contrast, we take our decision 
variable to be heat flux measured on the surface. We assume the uncertainty in the 
measurements have a uniform standard deviation σm and that the measurement 
uncertainties at each measurement location are uncorrelated.  
 
We will use the methodology developed in the previous chapter to answer the following 
questions: 
 

1. Are the measurements taken from the validation experiments adequate to 
represent the decision variable of the target application?  

 
2. If the answer to item 1 is in the affirmative, how should we weight the 

measurements to best represent the target application? 
 

3. What is the sensitivity of this representation to the measurement uncertainty? 
 

4. Is the uncertainty in the measurements sufficiently small to adequately 
represent the target application? 

 
We begin by presenting the mathematical formulation for the problem. Assume that our 
models for the validation experiment and the target application are given by  
 
 
 Experiment: Application: 
 

 0
d
d

2

2

=
x
T  0

d
d

2

2

=
x
T  (3.1) 

 

 T(0) = T0 = α1 T(0) = T0 = α1 (3.2a,b) 
 T(1) = T1 = α2 T(1) = T1 = α2 (3.2c,d) 
 
 γ1 = T(0.25) d = -k dT(1)/dx (3.3a,b) 
 γ2 = T(0.75)  (3.3c) 
 
The uncertainty in the measurements can be written in terms of the covariance matrix of 
γγγγ. 
 

  Iγ 22 σ
10
01

σ)cov( mm =







=  (3.4) 

 
where I is the identity matrix. Since we have simple models, we can illustrate this 
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example using closed form solutions rather than numerical solutions. The solutions are 
given by 
 
 Experiment: Application: 
 
 xxT 21 )1( αα +−=  xxT 21 )1( αα +−=  (3.5a,b) 
 

 The measurements and decision variables are thus given by 
  
 Experiment: Application: 
 
 211 25.075.0 ααγ +=  )( 21 αα −= kd  (3.6a,b) 
 212 75.025.0 ααγ +=   (3.6c) 
 
Performing a first order sensitivity analysis gives (see Eqs. (2.3) and (2.4)) 
 
 Experiment: Application: 
 

 






=∇
75.025.0
25.075.0

Fα  [ ]kk −=∇ Gα  (3.7a,b) 

 
so 

 







−

=







k

k
a

75.025.0
25.075.0

 (3.8) 

 
 
Note that the two columns of the matrix are independent. We can thus represent any 
vector on the right hand side of Eq. (3.8) as a linear combination of the columns in the 
matrix. Thus, we can write the sensitivity of the target application to the important model 
parameters αααα in terms of the sensitivities of our validation experiments to these 
parameters.   
 
Solving for a gives 
 

 







−

=
k

k
2

2
a  (3.9) 

 
Using these results in Eq. (2.12) and (3.3) gives 
  

 
5.0

)25.0()75.0(
5.0

∆ 12T TTkkd ∆−∆−=∆−∆−==∆ γγγa  (3.10) 
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Note that Eq. (3.10) is simply the first order finite difference approximation to the flux. In 
other words, this methodology does, in fact, tell us how to weight the measurements 
(strictly speaking, differences in the measurements), to best represent the decision 
variable for the target variable. Given the weighting a, we can evaluate the corresponding 
uncertainty in the decision variable d. The covariance matrix of ∆d is given by (see Eq. 
(2.16)) 
 
 cov(d) = σd

2 = aT cov(γγγγ) a (3.11) 
 
Using Eq. (3.9) gives 
 σd

2 = σm
2 aT I a = 8 σm

2 k2 (3.12) 
 
Note that the variance in the approximation to changes in the target variable is 8 times the 
conductivity-squared times the variance in the measurement variables. 
 
What does all this mean? First, a first-order model for the sensitivity of the target decision 
variable to the model parameters can be represented by a linear combination of first order 
models for the predicted validation measurements. A weighting of the validation 
experiment measurements can be defined to represent the target application. In other 
words, the measurements can be weighted to represent the sensitivity of the target 
decision variable to the model parameters. Secondly, the variance in the reconstructed 
decision variable is 8k2 times the variance of the measurements. If the acceptable level of 
uncertainty in the decision variable for the actual target application is, say 2k2; then the 
validation experiment must be designed so that the corresponding variance in the 
measurements is less than 0.25, i.e.; 
 
 8 σm

2 k2 < 2 k2 ⇒ σm
2 < 0.25 (3.13) 

 
Note that at the σm

2 = 0.25 level, the uncertainty in the validation measurements equals 
the uncertainty allowed in the target application. In fact, we should require that the 
uncertainty in the validation measurements be much less since there will be other sources 
of uncertainty in the target application, such as larger levels of uncertainty in the model 
parameters (we can almost always control validation experiments at a finer level then we 
can target applications). We will show the effect of uncertainty in the model parameters 
in a later section. 

3.3 Simple Heat Conduction: 2 Validation Experiments 
 
Consider the one-dimensional thermal heat conduction problem illustrated in Figure 3.2. 
In this example, we again assume that the validation experiments and the target 
application have the same geometry and materials and that there are no uncertainties in 
the geometry or materials.  For validation experiment 1, we assume that we have internal  
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Figure 3.2: Example 2: Heat Conduction Validation Experiments 

 
temperature measurements and no measure of flux on the surface, nor internal generation. 
We design validation experiment 2 to have uniform internal generation with a single 
temperature measurement made at x=xv in the interior. As in the previous case, our 
decision variable is the flux at the x=1 surface. Our target application is given in Figure 
3.3. Note that the decision variable is again flux at x=1. The target application contains 
uniform internal generation. 
 
We assume that the important model parameters are the boundary conditions at x=0 and 
x=1, and the internal generation q. We also assume that the covariance matrix for the 
validation measurements is given by 
 

 Iγ 22 σ
100
010
001

σ)cov( mm =















=  (3.14) 
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T1  
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Figure 3.3: Example 2: Target Application 
 
 
 
Our models for the two validation experiments are  
 
 
 Experiment 1: Experiment 2: 
 

 0
d
d

2

2

=
x
T  32

2

d
d α== q

x
T  (3.15a,b) 

 

 T(0) = T0 = α1 T(0) = T0 = α1 (3.16a,b) 
 T(1) = T1 = α2 T(1) = T1 = α2 (3.16c,d) 
 
 γ1 = T(0.25) γ3 = T(xv) (3.17a,b) 
 γ2 = T(0.75)  (3.17c) 
 
The model for our target application is 
 

Zero Flux T1  

x 

Application 

1

Uniform 
internal 
generation q 

-k dT/dx 
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 32

2

d
d α== q

x
T  (3.18) 

 

 dT(0)/dx = 0 (3.19a) 
 T(1) = T1 = α2 (3.19b) 
 
 d = -k dT(1)/dx (3.20) 
    
 
Since we have simple models, we can illustrate this example using closed form solutions 
rather than numerical solutions. The solutions are given by 
 
 Experiment 1: Experiment 2: 
 

 xxT 21 )1( αα +−=  )(
2

)1( 23
21 xxxxT −++−=

ααα  (3.21a,b) 
 

 The measurements are thus given by 
  
 Experiment 1: Experiment 2: 
 

 211 25.075.0 ααγ +=  )(
2

)1( 23
213 vvvv xxxx −++−=

αααγ  (3.22a,b) 

 212 75.025.0 ααγ +=   (3.23) 
 
The solution for our target application is 
 

 )1(
2

23
2 −+= xT

αα  (3.24) 

 
The decision variable is  
 
 3αkd −=  (3.25) 
 
 
Performing a first order sensitivity analysis gives (see Eqs. (2.3), (2.4), (3.24), (3.25)) 
 
 Experiment: Application: 
 

 
( ) 
















−−
=∇

21
075.025.0
025.075.0

2
vvvv xxxx

Fα  [ ]k−=∇ 00Gα  (3.26a,b) 
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We will now consider three cases. These are 1) the use of experiment 1 only, 2) the use of 
experiment 2 only, and 3) the use of both experiments.  
 

3.3.1 Case 1: Experiment 1 Only 
 
In this case, we use only the first two rows of Eq. (3.26a) corresponding to Experiment 1. 
 

 






=∇
075.025.0
025.075.0

Fα  [ ]k−=∇ 00Gα  (3.27a,b) 

so 

 
















−
=

















k
0
0

0
75.0
25.0

0
25.0
75.0

a  (3.28) 

 
Note that while the two columns of the matrix are independent, they cannot represent the 
right hand side. No linear combination of these columns can represent the right hand side 
for a non-zero k. In the context of the present method, the first validation experiment, by 
itself, cannot represent the target application. This is not surprising since we considered 
internal generation as an important parameter which is not present in the first validation 
experiment. Because a solution to Eq. (3.28) does not exist, we cannot pursue this 
problem further without additional experiments. 
 

3.3.2 Case 2: Experiment 2 Only 
 
In this case, we use only the last row of Eq. (3.26a) corresponding to Experiment 2. 
 
 ( )[ ]21 2

vvvv xxxx −−=∇ Fα  [ ]k−=∇ 00Gα  (3.29a,b) 
 
so 
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1
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 (3.30) 

 
 
Note that there is no xv that gives zeros in the first two elements of the left hand side. 
Thus, we cannot find an a that satisfies Eq. (3.30).  In the context of the present method, 
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the second validation experiment by itself, cannot represent the target application. This is 
a bit more surprising since the second application contains the same physics as the target 
application. However, we cannot reconstruct the decision variable, heat flux, without the 
additional internal measurements. This suggests that we may need to use both validation 
experiments to resolve the target application decision variable.  
 

3.3.3 Case 3: Experiments 1 and 2 
 
In this case, we use all of Eq. (3.26a) 
 
 Experiment: Application: 
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Fα  [ ]k−=∇ 00Gα  (3.31a,b) 

 
so 
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2
a  (3.32) 

 
Do the columns of the matrix span the right hand side of Eq. (3.32)? The answer to this 
question depends on the value for xv. For example, if we take xv = 0, Eq. (3.32) gives 
 

 
















−
=

















k
0
0

000
075.025.0
125.075.0

a  (3.33) 

 
Clearly, no linear combination of the columns of the coefficient matrix can reproduce the 
–k term in the right hand side. If xv = 1, then all the elements in the last row of the 
coefficient matrix are also zero, leading to the same results. Taking measurements on the 
boundaries of the second validation experiment does not help us resolve the effect of 
internal generation in the target application. In contrast, there is a unique solution to Eq. 
(3.33) for interior xv. For example, taking the measurement from the center of the 
conducting slab, xv = 0.5, results in 
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5.025.075.0

a  (3.34) 

 
which does have a unique solution. Thus this set of experiments can represent the 
sensitivities of the target application to the important model parameters. Solving for a 
gives 
 

 















−
−

=
8
4
4

ka  (3.35) 

 
Using this in Eq. (2.16) gives  
 σd

2 = σm
2 aT I a = 96 σm

2 k2 (3.36) 
 
While these measurements can be weighted to represent the target application, we see that 
our estimate of the corresponding decision variable is very sensitive to the measurement 
error. In other words, while the suite of experiments are appropriate for the target 
application, the experiments were selected in a fashion that the resulting representation of 
the decision variable is very sensitive to small errors in the measurements. Can we 
improve this by taking the internal temperature measurement from experiment 2 at some 
other location xv? The xv that minimizes Eq. (2.16), given Eq. (3.32), can be shown to be 
xv = 0.5. So xv is already optimum. However, we may be able to reduce the sensitivity to 
the measurements noise by using additional measurements.  
 
Consider two measurements taken in experiment 2 at x = 0.5 - δ and x = 0.5 + δ.  
 
In this case, the Eq. (3.32) becomes 
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 (3.37) 

 
Note that since we have 4 measurements, but are only attempting to represent the 
sensitivity of the system to 3 parameters, the system has one free variable. There are an 
infinity of solutions for δ ≠  ±0.5 (i.e., the two measurements in the interior of the 
conducting solid). We choose the solution that minimizes the following  
 
 σd

2 = σm
2 aT I a (3.38) 
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subject to the constraints given by Eq. (3.37) using the Lagrange multipliers as discussed 
in the previous chapter. For example, if we take δ = .25, we find 
 

 


















−
−

=

333.5
333.5
333.5
333.5

ka  (3.39) 

 
Using Eq. (2.16) gives  
 σd

2 = σm
2 aT I a = 113.8 σm

2 k2 (3.40) 
 
Searching through all possible δ to find the one that minimizes Eq. (3.38) gives 
δ = 0. This is equivalent to taking two independent measurements at the same location, 
the center of the slab. This can be accomplished by installing two thermal couples along 
the centerline. The corresponding weighting of the 4 measurements is 
 

 


















−
−

=

4
4
4
4

ka  (3.41) 

 
with 
 σd

2 = σm
2 aT I a = 64 σm

2 k2 (3.42) 
 
We see that the use of two measurements in experiment 2 does improve the ability to 
resolve the decision variable somewhat, but the weighting of the measurements to 
represent the decision variable is still very sensitive to the measurements uncertainty. 
 
This last example shows the power of the present approach. The approach not only shows 
how to weight the measurements to resolve the first order sensitivity of the decision 
variables for the target application to the measurements, but also relates uncertainty in the 
validation measurements to the corresponding uncertainty in the reconstruction of the 
decision variable. Comparing Eqs. (3.12) to (3.42), we see that the sensitivity to 
measurement error in the internal temperature measurements is much greater for our 
target application with internal generation than for that without internal generation.  
 
In the following section, we introduce a more complex example that includes the effect of 
uncertainty in the unit and system level models to uncertainty in the model parameters. 
This has the effect of increasing the overall uncertainty in the reconstructed decision 
variable.  
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3.4 Transient Heat Conduction with Parameter Uncertainty 
 
We now look at a transient heat conduction problem in the presence of model parameter 
uncertainty. Consider the following models for the unit level experiments and application: 
 
 Experiment: Application: 
 

 2

2

x
T

C
k

t
T

p ∂
∂=

∂
∂

ρ
 2

2

x
T

C
k

t
T

p ∂
∂=

∂
∂

ρ
 (3.43a,b) 

 

 T(x,0)=0  T(x,0)=0 (3.44a,b) 
 T(0,t) = T0 T(0,t) = T0 (3.44c,d) 
 T(1,t) = T1 T(1,t) = T1 (3.44,e,f)) 
 
 γ1 = T(0.25,tj), j=1,n d = -k dT(1,ta)/dx (3.45a,b) 
 γ2 = T(0.75,tj), j=1,n  (3.45c)   
 
Note that the above is the transient version of the first example problem presented 
previously. This problem adds considerable complication in that we have measurements 
taken at various spatial and temporal locations and our decision variable is sampled at 
discrete times. We take the following variables as important and/or uncertain to the 
model. 
 
 Experiment: Application: 
 
 Important: T0, T1, k, ρCp Important: T0, T1, k, ρCp  
 Uncertain: k Uncertain: T0, T1, k, ρCp  
 
Note that we are assuming that we can measure the boundary temperatures accurately for 
the validation experiment, but that we will have uncertainty in the target application 
boundary temperatures simply because we cannot run the application a-priori. Also, note 
that we have uncertainty in the thermal conductivity in both cases, but also have 
uncertainty in the heat capacity for the decision variable. This example was chosen to 
illustrate that we can have different parameters with different uncertainties for the 
validation experiments and the target application. The parameters important to both 
models are 
 
 α1 = T0,  α2 = T1, α3 = k, α4 =ρCp (3.46) 
 
The unit and system level uncertain parameters are 
 
 αv1 = k , αa1 = T1, αa2 = T2, αa3 = k, αa4 = ρCp (3.47) 
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Due to the simple form of our models, we use a closed form (Carslaw and Jaeger, 1978) 
solution to the Eqs. (3.43) and (3.44). 
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 (3.48) 

where 
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 (3.49) 

 
Our decision variable is given by (see Eq. (3.45b)) 
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Let’s assume that the mean model parameters and their corresponding uncertainties are 
given by the values shown in Table 3.1. We also show the uncertainty in the 
measurements. 
 

Table 3.1: Model Parameters and Temperature Measurements 
 
 Parameter Mean Value Standard Deviation 

 
Validation Experiment  
 k 1.0 0.05 
 γ  0.25 
 
Application 
 T1 10.0 2.0 
 T2 20.0 2.0 
 k 1.0 0.1 
 ρCp 1.0 0.1 

 
For much of this analysis, we do not need to assume a functional form for the probability 
density functions. However, the statistical inference for model validity will require that 
we make additional assumptions concerning the underlying distributions. At that time, we 
will assume that the uncertainties for these parameters can all be modeled by independent 
normal distributions. Note that we show more uncertainty in the thermal conductivity for 
the target application than we do for the unit level validation experiments. We expect our 
validation experiments to be better controlled than our target applications.  Rather than 
evaluate the sensitivity derivatives by differentiating (3.48) and (3.50) directly, we will 
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use finite differences to estimate these derivations. This is simply a convenience, but also 
is typical of the method used to evaluate more complex models that must be solved 
numerically. The times at which the measurements are taken are given in Table 3.2. We 
also show predicted measurements using the mean parameter values listed in Table 3.1. 
Simulated experimental measurements are also provided. These measurements were 
generated using the following procedure: 
 

1. Randomly generate a set of validation model parameters using the probability 
distribution for the parameters. For this case, we have one model parameter, k, 
with the statistics given in Table 3.1. We randomly generate this parameter 
because we are uncertain as to what the parameter should be for the actual 
validation experiment. 

 
2. Given the set of parameters, use the model to generate a set of predicted 

measurements. 
 

3. Add random noise to the predicted measurements to represent the measurement 
noise. In this case, we assumed a normal distribution for each of the 
measurements with the statistics given in Table 3.1. 

 
This procedure generates a set of measurements that we may obtain if the model were 
valid. To make the analysis more interesting, we repeated the above procedure multiple 
times until a significant, but low probability, set of measurements was obtained. We did 
this to demonstrate the methodology when the measurements were near the region of non-
acceptance for a model. The resulting measurements are shown in the last column of 
Table 3.2. 
 
 

Table 3.2: Temperature Predictions and Measurements 
 
 Time x Tpred Tmeas 
 
 0.10 0.25 7.53 8.30 
 0.25 0.25 11.35 12.00 
 0.50 0.25 12.40 12.38 
 0.75 0.25 12.49 12.85 

1.00 0.25 12.50 12.69 
0.10 0.75 12.40 12.68 

 0.25 0.75 16.35 16.24 
 0.50 0.75 17.40 17.56 
 0.75 0.75 17.49 17.70 
 1.00 0.75 17.50 17.00 
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The sensitivity coefficients for these measurement times and locations are given in Table 
3.3. These were obtained using forward first order finite differences with a step size of 
0.01 times the mean value for that parameter. 
 
 

Table 3.3: Sensitivity Coefficients for Validation Model Parameters 
 

 Time x 
1T∂

∂F  
2T∂

∂F  
k∂

∂F  
pCρ∂

∂F  

  
 0.10 0.25 0.5761 0.08834 4.711 -4.704 
 0.25 0.25 0.7118 0.2118 2.710 -2.831 
 0.50 0.25 0.7468 0.2468 0.4677 -0.4863 
 0.75 0.25 0.7497 0.2497 0.05877 -0.06263 
 1.00 0.25 0.7410 0.2500 0.006565 -0.007170 
 0.10 0.75 0.08834 0.5766 5.186 -5.193 
 0.25 0.75 0.2118 0.7118 2.793 -2.834 
 0.50 0.75 0.2468 0.7468 0.4677 -0.4863 
 0.75 0.75 0.2497 0.7497 0.05877 -0.06263 
 1.00 0.75 0.2500 0.7500 0.006565 -0.007170 
 
 
The sensitivity coefficients for the target application are listed in Table 3.4 using the same 
finite difference technique as was used for Table. 3.3 
 
 

Table 3.4: Sensitivity Coefficients for Target Application Model 
 

 Time 
1T∂

∂G  
2T∂

∂G  
k∂

∂G  
pCρ∂

∂G  

 
 0.125 0.4319 -1.597 -5.270 -22.20 
 0.250 0.8305 -1.170 -2.554 -12.59 
 0.375 0.9506 -1.049 -6.044 -5.531 
 0.500 0.9856 -1.014 -8.333 -2.161 
 0.625 0.9958 -1.004 -9.366  -0.7914 
 0.750 0.9988 -1.001 -9.773 -0.2783 
 0.875 0.9996   -1.000 -9.922 -0.09513 
 1.000 0.9999 -1.000 -9.974 -0.03186 
 10.00 1.0000 -1.000 -10.00 0.000 
 
Given these sensitivities, we use Eq. (2.26) to evaluate the weighting matrix A.  
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 ( ) ( )( ) T11T1 ))(())(()cov())(())(()cov( αGαFγαFαFγA αααα ∇∇∇∇=
−−−  (2.26) 

 
The standard deviation of the decision variable as a function of time for the reconstructed 
decision variables can now be evaluated from Eq. (2.39). 
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 (2.39) 

 
The standard deviation for each measurement time is given by the square root of the 
diagonal elements in the matrices that make up Eq. (2.39). The results are given in Table 
3.5. The second column shows the contribution due to measurement uncertainty (first 
term on RHS of Eq. (2.39)), the third column is the contribution due to parameter 
uncertainty in the unit level model (second term on the RHS of Eq. (2.39)), the fourth 
column is the contribution due to uncertainty in the target application model (last term on 
RHS), and the last column gives the total uncertainty.  
 

Table 3.5: Distribution of Uncertainty in Decision Variable 
 
 Time σσσσd-meas        σσσσd-v        σσσσd-a        σσσσd 
 
 0.125 141.6 0.263 4.02 141.7 
 0.250 78.1 0.128 3.14 78.1 
 0.375 59.7 0.30 2.95 59.8 
 0.500 54.1 0.42 2.96 54.2 
 0.625 52.4 0.47 2.99 52.5 
 0.750 51.9 0.49 2.99 52.0 
 0.875 51.7 0.50 3.00 51.8 
 1.000 51.6 0.50 3.00 51.7 
 10.00 51.6 0.50 3.00 51.7 
 

Note that the uncertainty in the reconstructed decision variable is greatest at early time 
and decreases toward steady state. The sensitivity to noise in the measurements decreases 
as one approaches steady state. We expect this since the surface flux at latter times is 
dependent on internal temperatures at earlier times. At latter times, we effectively have 
more internal measurements and we gain the advantage of a reduced standard deviation in 
the reconstructed decision variable due to this additional data. The sensitivity due to the 
uncertain model parameter, thermal conductivity, also increases as we approach steady 
state. At zero time, we assumed no uncertainty in the initial conditions. As we move away 
from time zero, the uncertainty in the reconstructed flux increases because of our 
uncertainty in thermal conductivity. Unlike the effect of measurement uncertainty, the 
effect of uncertainty in the predicted measurements due to uncertainty in thermal 
conductivity is fully correlated. There is no advantage gained by additional 



     

 

 51 
 
  
 
 

measurements. In contrast, the uncertainty in the reconstructed decision variable due to 
uncertainty in the target application uncertainty variables is larger simply because these 
variables include uncertainties in thermal conductivity, thermal diffusivity, and the 
temperature at both boundaries. However, the last column of Table 3.5 clearly indicates 
that the total uncertainty is most dependent on the uncertainty in the temperature 
measurements from the validation experiment. 

There are several conclusions that we can state for this example problem. First, the 
transient validation experiments do cover the target application decision variable, even 
though we take measurements at different times, and the decision variable is different 
than the variables measured for the validation experiments. We know this because we did 
not obtain a singular matrix during the analysis (or unreasonably high covariances for the 
decision variable). The results of Table 3.5 indicate that the sensitivity of the 
reconstructed decision variable decreases as we approach steady state. However, the 
decision variable is still excessively sensitive to measurement noise in the validation 
experiments. An additional example addressing this issue will be presented in Sections 
3.6 and 3.7. 

The examples presented so far address coverage of the target application decision variable 
by the validation experiments. We now address the use of these results to develop a 
validation metric. 

3.5 Transient Heat Conduction with Parameter Uncertainty: Validation 
 
In this example, we use the transient example discussed in the previous section. We begin 
by applying the metric developed in Hills and Trucano (2001) for the validation data that 
does not account for the target application. For normally distributed model parameters 
and the sensitivity analysis presented above, this metric is  
 
 )),(()cov()),(( T2 γααFγFγααF −><−−><= vvr  (3.51) 
where 
 
 T)),()(cov(),()cov()cov( vvv vv

ααFαααFγγF αα ∇∇+=−  (3.52) 
 
From the data provided in the tables of the previous section, we find 
 
 r2 = 17.5 (3.53) 
 
which has a significance of (Hills and Trucano, 2001) 
 
 P(χ2(10) > r2) = 0.064 (3.54) 
 
Note that we have 10 degrees of freedom since we have 10 measurements. Eq. (3.54) tells 
us that we have a 6.4% probability of obtaining r2 = 17.5 or larger for a valid model for 
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the validation experiments. If we choose to test the model at the 5% significance level, 
then we do not have sufficient evidence to reject the model as valid. Keep in mind that we 
picked these simulated measurements so that we were near the boundary of model 
rejection. This is why the significance 6.5% is close to our 5% cut-off point. 
 
The above procedure does not account for the target application. How does this result 
change if we account for the target application by the representative methods developed 
in the previous chapter? The metric developed in the previous chapter is given by Eq. 
(2.43).   
 
 ddd ∆∆= + )(covT2r  (2.43) 
 
where cov(d) is given by Eq. (2.42).  
 
 [ ]AααFαααFγAd αα

TT )),()(cov(),()cov()cov( vvv vv
∇∇+=  (2.42) 

 
The difference in the reconstructed decision variables is give by  
 
 )),((T γααFA∆d −><= v  (3.55) 
 
Note that we evaluate the model for the predicted validation measurements at the 
expected value of the uncertain model parameters. For highly nonlinear problems, a more 
appropriate alternative would be to replace F(αααα,<ααααv>) with the expected value of F, 
<F(αααα,ααααv)>.  
 
We need to evaluate a pseudoinverse of cov(d) since we will find the rank of d is not 
equal to the dimension of d. We will also need to evaluate the rank of d so that we know 
the number of degrees of freedom of our resulting metric.  
 
The Mathematica (Woolfram, 1999) routine PseudoInverse implimented here uses the 
singular value decomposition to find those directions in the row and column spaces of a 
matrix that have non-zero singular values (related to the eigenvalues). This routine then 
takes the inverse in just the subspace corresponding to the non-zero singular values. This 
is discussed in Hills and Trucano (2001). We can perform a singular value decomposition 
directly to find the number of non-zero singular values using the Mathematic routine 
SingularValue. The number of non-zero singular values will be equal to the rank of the 
pseudoinverse matrix provided by PseudoInverse. Applying this process, we found that 
the cov(d) had 4 non-zero singular values (zero within the default tolerance used by 
Mathematica, Woolfram, 1999), indicating that we have only 4 degrees of freedom in the 
covariance matrix. This is not surprising since we defined the weighting matrix A to best 
map the validation experiments sensitivity matrices to the decision variable sensitivity 
matrix. The latter has a rank of 4, the number of important parameters. Thus, we may 
expect the weighting matrix A to map the covariance matrix for the differences between 
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the validation model predictions and the corresponding experimental measurements into a 
4 dimensional subspace. The dimension of this subspace represents the degrees of 
freedom of our cov(d) matrix and should be used for the degrees of freedom for our 
statistical inference.   
 
Taking the pseudoinverse of cov(d), utilizing Eq.(2.43) and the data provided in the 
tables results in 
 
 ddd ∆∆= + )(covT2r  = 9.46 (3.56) 
 
Since r2 is distributed as a χ2(n+) with n+ = 4 degrees of freedom, we can evaluate the 
cumulative probability of obtaining a larger r2, given that our model is valid. We find 
 
 P(χ2(4) > r2) = 0.051 (3.57) 
 
This indicates that 5.1% of experiments with a valid model would provide an r2 this large 
or larger, given the present levels of uncertainty in the measurements and in the model 
parameters. Thus, if we wish to evaluate this model at the 5% confidence level (i.e. reject 
a model only if the probability is less than 5% of observing these or worse results with a 
valid model), we cannot reject this model as valid. Since we actually used the model to 
generate this data, we would hope that this model would not be rejected as valid. Note 
that the probability given by Eq. (3.57) is very close to the probability given when the 
effect of the target application is not included (i.e., Eq. (3.54)). In this case, the effect of 
the target application on our metric is not large. This is not too surprising since our target 
application is very similar to the validation experiments. The most significant differences 
are 1) the use of surface flux for the decision variable of the target application whereas we 
used internal temperature measurements for the validation experiments, 2) the denser 
sampling rate for the target application, and 3) the use of larger times for the target 
application.   
 
The metric of Eq. (3.56) is defined in terms of a vector of decision variables, the time 
varying behavior of surface flux for our heat conduction problem. We can also define a 
metric for each time. In this case, Eq. (3.56) becomes 
 
 222 / iii dr σ∆=  (3.58) 
 
where σi

2 is the (i, i)th element in the cov(d). Since this is a single variable, the degrees of 
freedom is one. The results of applying this metric to our data is given in Table 3.6. Note 
that all of the r2 are small, the corresponding levels of significance are quite high, and that 
they are nearly uniform. This indicates that on a point-by-point basis, the corresponding 
uncertainty in the reconstructed decision variable difference is large. If all we care about 
is the ability of the validation experiments to represent the decision variable for a single 
time, then the uncertainty in the corresponding metric is large, and we do not have as 
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rigorous of a test. If, on the other hand, we care about the ability to represent all of the 
decision variable times, then we may be tempted to take the product of the individual 
probabilities (which ignores dependence) given in Table 3.6 to give us the probability of 
all of the measurements being further from the model predictions. The product is  
 
 10.0))1(χ(P 22 =>∏

i
ir  (3.59) 

 
Note that this is considerably less than the 0.77 values obtained for the point-by-point 
metrics (Table 3.6). This decreased value for the significance is due to the increase ability 
to resolve bad models due to the use of multiple data. However, Eq. (3.59) should not be 
used in this fashion. This product does not represent the true significance of the 
multivariate data because it does not account for correlation between the differences (see 
Hills and Trucano, 2002). In contrast, Eqs. (3.56) and (3.57) do properly account for the 
correlation effects and should be used. 
 

Table 3.6: Scalar Decision Variable Metrics 
 
 Time ri2        P(χχχχ2(1) > ri2) 
 
 0.125 0.0814 0.78 
 0.250 0.0785 0.78 
 0.375 0.0804 0.78 
 0.500 0.0824 0.77 
 0.625 0.0835 0.77 
 0.750 0.0840 0.77 
 0.875 0.0841 0.77 
 1.000 0.0842 0.77 
 10.00 0.0842 0.77 
 

3.6 Transient Heat Conduction with Parameter Uncertainty: Reduced 
Parameters 
 
The example presented in Section 3.4 demonstrate strong sensitivity to measurement 
error. This suggests that our unit-to-system experiments are not adequately designed to 
resolve sensitivity to the 4 parameters listed in Table 3.1. While the thermal conductivity 
does appear as a separate parameter in the flux boundary condition shown in Eq. (3.45b), 
heat conduction in the interior of the region is governed by the thermal diffusivity, the 
ratio of k and ρCp. Here we repeat the previous example problem, but consider only the 
three parameters T0, T1, and the ratio k/ρCp to be the important parameters. 
 
The model equations are given by Eqs. (3.43) through (3.45) where the important and 
uncertain model parameters are given by the following: 
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 Experiment: Application: 
 
 Important: T0, T1, k/ρCp Important: T0, T1, k/ρCp  
 Uncertain: k/ρCp Uncertain: T0, T1, k/ρCp 

 
In this case, we define the α’s as follows: 
 
 α1 = T0,  α2 = T1, α3 = k/ρCp (3.60) 
 
The unit and system level uncertain parameters are 
 
 αv1 = k , αa1 = T1, αa2 = T2, αa3 = k/ρCp (3.61) 
 
The analytical solution to this problem still applies (i.e., Eqs. (3.48) through (3.50)). 
 
The uncertainties in the model parameters, and the measurements, are defined in Table 
3.7.  
 

Table 3.7: Model Parameters and Temperature Measurements 
 
 Parameter Mean Value Standard Deviation 

 
Validation Experiment  
 k/ρCp 1.0 0.05 
 γ  0.25 
 
Application 
 T1 10.0 2.0 
 T2 20.0 2.0 
 k/ρCp 1.0 0.1 

 
In this example, we ignore the uncertainty in k and only consider the uncertainty in the 
thermal diffusivity k/ρCp. Here we take k=1. Comparing Tables 3.1 and 3.7, we note that 
the uncertainty in the validation experiment due to k in Table 3.1 and k/ρCp in Table 3.7 
will result in the same uncertainty in the model predictions for the validation experiment 
since k only appears in the ratio k/ρCp in the model for the validation experiment. Thus 
we can use the simulated experimental measurements and model predictions given in 
Table 3.2.  
 
The process described in Section 3.4 was repeated to estimate the sensitivity coefficients 
for the validation experiment and the target application. These are tabulated in Tables 3.8 
and 3.9. 
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 Table 3.8: Sensitivity Coefficients for Validation Model Parameters 
 

 Time x 
1T∂

∂F  
2T∂

∂F  











∂

∂

pC
k

ρ

F  

  
 0.10 0.25 0.5761 0.08834 4.711 
 0.25 0.25 0.7118 0.2118 2.790 
 0.50 0.25 0.7468 0.2468 0.4677 
 0.75 0.25 0.7497 0.2497 0.05877 
 1.00 0.25 0.7410 0.2500 0.006565 
 0.10 0.75 0.08834 0.5766 5.186 
 0.25 0.75 0.2118 0.7118 2.793 
 0.50 0.75 0.2468 0.7468 0.4677 
 0.75 0.75 0.2497 0.7497 0.05877 
 1.00 0.75 0.2500 0.7500 0.006565 
 
 
 
 
 

Table 3.9: Sensitivity Coefficients for Target Application Model 
 

 Time 
1T∂

∂G  
2T∂

∂G  











∂

∂

pC
k

ρ

G  

 
 
  0.125 0.4319 -1.597 22.126 
  0.250 0.8305 -1.170 12.411 
  0.375 0.9506 -1.049 5.384 
  0.500 0.9856 -1.014 2.078 
  0.625 0.9958 -1.004 0.752 
  0.750 0.9988 -1.001 0.261 
  0.875 0.9996   -1.000 0.088 
  1.000 0.9999 -1.000 0.029 
  10.00 1.0000 -1.000 0.000 
 
 
 
The resulting distribution of uncertainty in the decision variable is provide in Table 3.10. 
Note that there is considerable less uncertainty for the present 3 parameter case than there 
was for the previous 4 parameter case. For example, at late times, the estimated standard 
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deviation is 3.02 for the present case and 51.7 for the 4 parameter case. The validation 
experiments are much less sensitive to measurement error when we used them to resolve 
the sensitivity of the models to three parameters rather than four. Because the three 
parameters do not independently account for thermal conductivity, an additional 
experiment should be designed and performed to properly test the ability of the model to 
predict thermal conduction, independent of thermal diffusion. The results of Table 3.10 
also indicate that most of the sensitivity in the reconstructed decision variable originate 
from uncertainties in the model parameters in the target application. This is not 
unexpected since the uncertainties in the model parameters for the target application are 
larger than for the validation experiments, as indicated by the values listed in Table 3.7. 
 
 

Table 3.10: Distribution of Uncertainty in Decision Variable 
 
 Time σσσσd-meas        σσσσd-v        σσσσd-a        σσσσd 
 
 0.125 0.949 1.106 4.84 5.06 
 0.250 0.579 0.621 3.47 3.57 
 0.375 0.381 0.269 3.10 3.14 
 0.500 0.329 0.104 3.02 3.04 
 0.625 0.320 0.038 3.01 3.02 
 0.750 0.318 0.013 3.00 3.02 
 0.875 0.318 0.004 3.00 3.02 
 1.000 0.318 0.001 3.00 3.02 
 10.00 0.318 0.000 3.00 3.02 

 

3.7 Transient Heat Conduction with Parameter Uncertainty: Reduced 
Parameters - Validation 
 
We now repeat the evaluation of the model validation metric for the 3 parameter case. 
Using the metric defined by Eqs. (2.43) we find the following (note cov(d) now has a 
rank of 3 since we are dealing with three parameters): 
 
  
                                                       r2 = 9.38;  P(χ2(3) > r2) = 0.025 (3.62) 
  
Assuming that this model is valid, the probability that this model would give the above r2 
or larger is only 2.5%. This suggest that we have good evidence to reject the model as 
valid. Note that in the previous case of 4 parameters, our level of significance (Eq. (3.57)) 
was 5.1% rather than 2.5%. This is because the previous experiment has significant 
uncertainty in the reconstructed decision variable. Since the statistical inference just 
performed measures the differences between model prediction and experimental 
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observations relative to the uncertainty in the validation exercise, the larger the 
uncertainty, the less likely are we to reject a bad model.  This result illustrates the 
importance of sensitivity analysis during the experimental design of validation 
experiments.  
 

3.8 Two-Dimensional Impact of Aluminum on Aluminum: Representative 
Method 
 
3.8.1 Background 
 
Before presenting the results of applying the present techniques to the high-speed impact 
of aluminum on aluminum, a brief review of past validation work for this application will 
be given.  

3.8.2 One-Dimensional Validation 
 
Hills and Trucano (2001) performed a model validation test of CTH predictions for shock 
wave speed as a function of particle speed for the impact of an aluminum slug on an equal 
sized, but stationary aluminum slug. CTH is an Eulerian shock physics code developed at 
Sandia National Laboratories (McGlaun, et. al., 1990, Bell et. al., 1998, Hartel and 
Kerley, 1998). Shock wave speed versus particle speed (one-half impact speed in this 
case) data were taken from 232 experiments for this impact (Marsh, 1980). The 
experiments were designed so that the resulting shocks were one-dimensional and steady.  
 
The 232 data pairs were randomly divided into two groups (see Hills and Trucano, 2001, 
for a listing of the data). One group of 112 measurements of shock speed versus particle 
speed was used to calibrate the Mie-Grüneisen Equation of State model used by the CTH 
code. The form of the shock Hugoniot required by this equation of state is given by 
(Hartel and Kerley, 1998) 
 
 Us = CS + S1Up + (S2/CS)Up

2 (3.63) 
 
where Us and Up are shock and particle speeds, respectively. The remaining variables in 
Eq. (3.63) are material dependent calibration constants. As Hills and Trucano (2001) 
discussed, there is the expected linear relationship between shock and particle speed for 
this particular data set over this particular range of data. S2 is thus zero and a regression 
analysis on the 112 data pairs was used to estimate CS and S1. The results of this analysis 
provided the following calibration constants and their statistics in the form of a 
covariance matrix. 
 

 







=








=

305.1
5344

1S
CSα  (3.64a) 
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×−

−
= −5105.30663.0

0663.04.166
)cov(α  (3.64b) 

 
 
The differences between the Us of the 112 data Us-Up pairs and the regression given by 
Eqs. (3.63) were then used as an estimate the measurement uncertainty. This estimate is 
made under the assumption of uniform standard deviation of these differences across all 
Up. The estimated standard deviation was found to be 
 
 σexper = 83.7 m/s (3.65) 
 
Hills and Trucano (2001) assumed that the measurement uncertainty was uncorrelated. 
The corresponding covariance matrix for the measurement uncertainty is thus given by 
 
 cov(Us_exper) = σexper

2 I (3.66) 
 
where I is the Identity matrix. 
 
With this model for the uncertainty in the calibration constants, CTH was used to 
propagate this parameter uncertainty through the model to evaluate the corresponding 
uncertainty in the predicted shock wave speed for the remaining 120 measurement pairs. 
These results were then used to test or validate the model. A first-order sensitivity 
analysis was used to relate the covariance of the model predictions to the covariance of 
the model parameters (see Hills and Trucano, 2001 for details).  The prediction 
uncertainty, as represented by the covariance matrix, is given by 
 
 T))()(cov()()cov( αFααFU ααs_pred ∇∇=  (3.67) 
 
where the component values for the gradient are listed in Appendix A for each of the 120 
validation data pairs. With models for measurement and prediction uncertainty, a model 
for the uncertainty of the prediction differences, p, was developed.  
 
 p = Us_pred - Us_exper (3.68) 
 
The covariance of p is given by (Hills and Trucano, 2001) 
 
 cov(p) = cov(Us_pred) + cov(Us_exper) (3.69) 
 
The assumption that the error distributions were multi-normal with the above covariance 
matrix defines the 120 dimensional PDF cloud for the validation exercise. The total 
uncertainty was dominated by measurement uncertainty (see Hills and Trucano, 2001), so 
the PDF cloud was nearly spherical in shape. Curves of iso-probability for multi-normal 
PDF are given by constant r2 values for the following quadratic equation  
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The validation hypothesis was that the mean prediction difference for each measurement 
location was zero. For this case Eq. (3.70) becomes 
 

 [ ]


















= −

120

2

1

1
12021

2 )(cov

p

p
p

pppr p  (3.71) 

 
From the estimated covariance matrix for the validation exercise and the prediction 
errors, Hills and Trucano (2001) found that  
 
 r2 = 130.0 (3.72) 
 
The cumulative probability for some r2 in this PDF cloud is given by the χ2 distribution 
with 120 degrees of freedom corresponding to the 120 measurement pairs (see Hills and 
Trucano, 2001). The critical value of r2 for which 5% of the cumulative probability is 
outside the r2 = constant PDF surface is 
 
 6.146)120(2

95.0
2

critica == χlr  (3.73) 
 
Since r2 = 130.0 is less than 146.6, the hypothesis that the mean prediction difference is 
zero, could not be rejected at the 95% confidence level. The data does not provide 
statistically significant evidence that the model is invalid. 
 

3.8.3 Two-Dimensional Target Application: Projection Method 
 
Hills and Trucano (2001) developed an application-based metric for the two-dimensional 
impact of a small 1 cm diameter cylindrical aluminum slug on a much larger 10 cm 
diameter aluminum cylinder. In the present report, this approach is called the projection 
method and was summarized in the previous chapter. The two-dimensional geometry of 
the application results in non-steady shock waves, with variable shock speeds throughout 
the larger aluminum cylinder. Conservation of momentum applied to the spherically 
expanding shock wave requires that shock speed decrease with time. Here we take this 
two-dimensional application as the target application and consider the one-dimensional 
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data presented in the previous section as the unit level measurements.  
 
The integrated decision variable was chosen to be the transit time for the shock wave to 
arrive at the back side of the larger aluminum cylinder. This time was defined as the time 
the particle speed on the back surface of the larger cylinder reaches 250 m/s with a front 
side impact speed of 6000 m/s. This impact speed produces a maximum particle speed of 
3000 m/s (see Hills and Trucano, 2001). In contrast, the validation experimental data 
covers a particle speed range from approximately 300 m/s to 4400 m/s. Since particle 
speeds are 3000 m/s or less for the two-dimensional case, only a subset of the 
experimental data was used in the analysis. Of the 120 Up-Us pairs selected for validation, 
89 covered the range from 0 – 3100 m/s. These data pairs are listed in Appendix A. Only 
those data pairs within this range of Up were used in the following analysis. 
 
Uncertainty in predicting the shock transit time results from the uncertainty in the two 
model parameters CS and S1 used in CTH. A sensitivity analysis was used to develop a 
mapping between the model parameters and the application decision variable (transit 
time). Since there was just one decision variable and two model parameters, the 
sensitivity matrix has one row and two columns. This sensitivity matrix was used to 
determine a direction in the model parameter space that has no effect on the decision 
variable (i.e., the projection method of the previous chapter). Hills and Trucano (2001) 
found this matrix to be 
 
 [ ]-7-9 4.7034x10     1.155x10-)( =∇ αGα  (3.74) 
 
This in turn provided a means to exclude prediction-measurement differences in the 
direction that does not impact on the decision variable using the projection method 
presented in Chapter 2.   
 
The result of this approach (see Hills and Trucano, 2001) was to project the 89-
dimensional validation data space into an 88-dimensional space. As discussed earlier, the 
covariance matrix based on this projection requires a pseudo-inverse to be performed 
because the inverse does not exist in the full 89-dimensional space. As in the previous 
section, we tested the hypothesis that the mean prediction difference for each 
measurement location was zero. This time the projected quantities were used, denoted by 
a superscript p. Analogous to Eq. (3.68), we have 
 
 p

s_exper
p
s_preds_expers_pred UUUUPp −=−= )(  (3.75) 

 
where the projection matrix P is given by Eq. (2.9). 
 
The covariance matrix of p was taken to be 
 
 )cov()cov()cov()cov()cov( TT p

s_exper
p
s_preds_expers_pred UUPUPPUPp +=+=  (3.76) 
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The pseudo-inverse of the covariance matrix is designated cov+ (p). Our metric for the 
subspace in terms of the pseudo-inverse is an analogous expression to Eq. (3.71). 
 

 [ ]


















= +
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1
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2 )(cov

p

p
p

pppr p  (3.77) 

 
Evaluation of Eq. (3.77) for the 89 model predictions and experimental measurements 
gave 
 r2 = 54.7 (3.78) 
 
A statistical test for the probability of this measure of prediction measurements was based 
on the χ2 distribution with 88 degrees of freedom. A critical value of r2 for which the 
cumulative probability inside the corresponding PDF surface is 95% is  
   
 9.110)88(2

95.0
2

critica == χlr  (3.79) 
 
Since r2 = 54.7 is less than 110.9, there was no statistical evidence to reject the model 
(CTH) as being invalid at the 95% confidence level which corresponds to a 5% level of 
significance.  
 
In this section, we presented an overview of the projection method based, application 
specific metric, which was originally developed by Hills and Trucano (2001) and applied 
to shock physics data. In the next section, we use the alternative representative method to 
develop the weights and the metric. We return to the projection method based metric for 
non-normally distributed CTH model parameters in a later section. 

3.8.4 Two-Dimensional Target Application: Representative Method 
 
The representative method defined in Chapter 2 is now applied to the aluminum impact 
case described above. As stated previously, the decision variable is the shock transit time, 
d=τ, the particle velocity on the back side of the large cylinder is anticipated to reach 250 
m/s. In contrast to the projection method example, we will use all 120 measurements, 
rather than the previously specified 89-measurement subset. Since this is a single decision 
variable, we will denote the vector  T)),(( aααGα∇  as g.  
 
 ( )T),( aααGg α∇=  (3.80) 
 
The components of g are given in Eq. (3.74). Eq. (2.35) is used to evaluate the weights to 
be used on the measurements to reflect the application.  
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where a lower case a is used to reflect that we have a single decision variable. The 
covariance in the differences between the model predictions and the experimental 
observations is given by Eq. (2.36) 
 
 T),()cov(),()cov()cov( vvv vv

ααFαααFγγF αα ∇∇+=−  (3.82) 
 
where the covariance matrix for the measurements is given by Eq. (3.66). 
 cov(γγγγ) = cov(Us_exper) = σexper

2 I (3.83) 
 
The covariance matrix for the model parameters is given by Eq. (3.64b). The gradient 
term for the validation model is given by 
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where the components of this matrix are provide in Appendix A for the 120 measurement 
pairs. The terms in Eq. (3.81) are now completely defined. Evaluating this equation 
results in the weights listed in Table 3.11 (note the pre-scaling of 1012) and plotted in 
Figure 3.4. 
 
The uncertainty in the reconstructed decision variable including the effect of target 
application parameter uncertainty, expressed as the covariance of d, can be found by 
application of Eq. (2.39).  
 
 [ ] TTT )cov()),()(cov(),()cov()cov( gαgaααFαααFγa αα avvv vv

d +∇∇+=  (3.85) 
 
Evaluating Eq. (3.85) results in  

 
 cov(τ) = cov(d) = 7.279x10-16 (sec)2 (3.86) 
 
The standard deviation is simply 
 



     

 

 64 
 
  
 
 

 sec107.2)cov( 8−×== τστ
 (3.87) 

 
A calculated time of arrival for the shock on the backside of the large aluminum block 
can be estimated from Fig 3.14 in Hills and Trucano (2001). The estimate, based on a 
simple curve fit of time versus shock front location, indicates a transit time for the leading 
edge of the shock of 7.6x10-6 sec. The reconstructed uncertainty (2στ) amounts to 
approximately 0.7 % of the transit time. This small uncertainty is consistent with the two-
dimensional validation metric reviewed above. 
 
We can now use the weighting vector of Table 3.11 to develop the corresponding 
validation metric using the methodology of Sections 2.3.1 and 2.3.2. Eq. (2.42) and (2.43) 
can be written as  
 
 ( )aααFαααFγa αα

TT )),()(cov(),()cov()cov( vvv vv
d ∇∇+=  (3.88) 

 
and  
 
 
 )cov(22 ddr ∆=  (3.89) 
 
since we have only one decision variable. Our ∆d is given by 
 
 ∆d = aT (Up_pred – Us_meas) (3.90) 
 
where the model predictions and experimental measurements are given in Table A.1. 
Evaluating Eq. (3.89) gives 
 
 r2 = 0.1670 (3.91) 
 
The probability that we can obtain this value or a larger value for r2 is 
 
 P(χ2(1) > r2) = 0.683 (3.92) 
 
Thus, we have a 68% probability of this r2 or a larger value, given that the model is valid. 
Since we would generally not reject a model as valid unless this percentage is less than 
5%, we do not have sufficient statistical evidence to reject this model.  



     

 

 65 
 
  
 
 

 
 

Table 3.11: The Weighting Vector for the Shock Physics Data 
 
  

Up 
 

ai x 1012 

 
Up 

 
ai x 1012 

 
Up 

 
ai x 1012 

 
278 -40.48 1121 -25.44 2738 3.17 
440 -37.24 1128 -24.99 2817 5.07 
472 -36.83 1130 -24.93 2911 7.36 
503 -36.38 1134 -24.83 2935 7.83 
507 -36.38 1136 -25.04 2974 7.67 
609 -34.46 1141 -24.98 2987 6.88 
626 -34.31 1159 -24.44 3030 7.44 
627 -34.29 1220 -23.63 3031 7.48 
671 -33.36 1220 -23.63 3086 11.85 
722 -32.25 1277 -22.34 3181 10.25 
727 -32.38 1352 -20.70 3187 10.35 
728 -32.37 1383 -20.12 3217 11.54 
778 -31.53 1437 -19.51 3225 13.73 
786 -31.14 1446 -18.73 3238 14.07 
792 -31.11 1467 -18.57 3260 14.39 
792 -31.11 1498 -19.27 3274 14.59 
799 -31.13 1557 -16.76 3347 13.36 
800 -31.22 1574 -16.72 3361 13.89 
800 -31.22 1578 -16.91 3376 13.34 
802 -31.15 1605 -16.28 3381 13.99 
802 -31.15 1742 -13.61 3387 14.08 
809 -30.76 1744 -13.72 3400 16.15 
818 -30.70 1779 -13.65 3419 16.64 
831 -30.62 1858 -11.76 3463 17.86 
859 -29.99 1939 -10.34 3472 18.15 
863 -29.85 1948 -9.89 3481 18.04 
871 -29.55 1959 -10.59 3508 17.56 
888 -29.64 2154 -7.21 3508 17.56 
891 -29.56 2156 -7.17 3563 18.34 
896 -29.36 2335 -2.74 3629 20.98 
897 -29.36 2371 -2.12 3658 21.37 
901 -29.24 2467 -0.61 3736 20.31 
953 -28.21 2477 -0.74 3745 21.80 
953 -28.21 2595 1.58 3772 20.73 
966 -28.08 2605 1.00 3786 23.06 
975 -28.22 2608 1.99 3930 24.50 
988 -27.77 2641 2.22 3967 24.37 
1110 -25.64 2645 2.13 3988 26.49 
1116 -25.53 2709 1.90 4001 26.40 
1119 -25.49 2735 3.76 4041 28.71 
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Figure 3.4: Weighting factors for 1-D CTH results applied to 2-D application. 
 
 

3.9 CTH Example: Representative Method for Non-Normal Distribution  
 
We end this chapter with the example application using the Maximum Likelihood method 
to develop a metric, using non-normal distributions in the model parameters. This 
approach was developed by Gaultney (2001) and repeated here with different statistical 
parameters. In contrast to the previous section, we use the projection method (see Chapter 
2) to develop the weights. For demonstration purposes, we use the following CTH model 
parameters and distributions.  
 
The uncertainty in the measurements d are assumed to be uncorrelated. The Beta and 
Triangular distributions are given by 
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where 
 

 
lbub
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,1,1

,11
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−
−

=  (3.93b) 

 
 

 
Table 3.12: Distributions for Measurements and Model Parameters 

 
 Variable Distribution Parameter Value 
 
 α1 (Cs) Beta α1,lb 5318 m/s 
   α1,ub 5370 m/s 
 
   β1 3 
   β2 2 
 
 α2 (S1) Triangular α2,lb 1.293 
   α2,ub 1.317 
 
 d Normal <d> f(αααα) 
   σd 83.7 
 
 
The relevant equations for the normalized triangular distribution assumed for α2 are 
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where 
 

 
lbub

lb
tx

,2,2
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−
−

=  (3.94b) 

 
 
The joint probability density function is given by 
 
 PDF(αααα, Pd) = PDFbeta(α1) · PDFtriangular(α2) 
 ·PDFnormal(Pd) (3.95)  
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We see that we need to know the probability density function for the projected 
measurements, Pd. Because the experimental data are normally distributed, the projected 
data, Pd, will be multinormally distributed. Linear combinations of normally distributed 
random variables are also normally distributed with the following covariance matrix. 
 
 Vd

p = P Vd PT (3.96) 
 
The covariance matrix for the measurements is given by (see Table 3.12) 
 
 Vd = I * 83.72 (3.97) 

 
where I is the identity matrix since the measure errors are uncorrelated.  We can now 
write the PDF for the projected measurements.  
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Note that we use the pseudoinverse since the projected covariance matrix will be singular. 
Gaultney (2001) assumed that when the true values of the model parameters are used, the 
model will provide predictions that are consistent with the expected value of the 
measurements.   
 
 <P d> = P f(αααα) (3.99) 
 
Equation (3.98) can now be written 
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Rather than re-run CTH, we use the sensitivity matrix already found to approximate the 
response of the shock speed as a function of particle speed. This is a good approximation 
since shock speed is linear in the model parameters over the measurement range of 
interest (see Hills and Trucano, 2001). Our approximate model for the predicted 
measurements is given by (see Eq. (2.4)) 
 
 )()()()( 00 αααFαfαf α −∇+≈  (3.101) 
 
were the components of χχχχ are the values approximated by Hills and Trucano (2001) and 
reproduced in Eq. (3.64a), (i.e., 0α = [5344, 1.305]T). 
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Given the distributions defined by Eqs. (3.93) through (3.94), we can now choose the 
model parameters that minimize Eq. (3.95). We use the Mathematica (Woolfram, 1999) 
optimization routine FindMinimum. As was the case for Gaultney (2001), we use only the 
89 measurement subset that was used in Section 3.8.3. The results of this procedure are 
given in Table 3.13. 
 
 

Table 3.13: Results of Maximum Likelihood Optimization 
 
 Parameter Value 
 α1 (Cs) 5350.1 
 α2 (S1) 1.305 
 
We now need to evaluate the cumulative probability that a valid model will give the 
corresponding PDF value or less. Because we are dealing with non-normal distributions, 
Gaultney used a simple Monte Carlo approach. Random values for the measurements are 
generated using the PDFs, the statistics provided in Table 3.12, and the methodology 
defined at the end of the previous chapter. These values are substituted into Eq. (3.95) to 
find the corresponding PDF. This process was repeated 50,000 times resulting in 49,907 
of the PDF values being less than that found by the optimization procedure. Thus, we can 
estimate the significance of the results listed in Table 3.13 as 0.998 ( =49,907/50,000).  
Clearly there is no evidence to reject the CTH model as valid based on the projected 
measurements as 99.8% is much greater than 5% significance level that we typically use 
to reject a model (see Hills and Trucano, 2001).  
 
Note that we can apply this same procedure to the weighted measurements, whether they 
are formed by the projection method or by the Lagrangian weights of the representative 
method.  



     

 

 70 
 
  
 
 

 
 
 
 
 
 
 
 

(Page left blank) 
 



     

 

 71 
 
  
 
 

4.0 Discussion and Recommendations 
 

4.1 Discussion 
 
Several methods have been presented that weight the validation measurement data to 
better reflect a target application of a model. These methods are based on a first order 
sensitivity analysis of the models for the validation experiments and for the target 
application. The first method is Gaultney’s (2001) extension of the application-based 
metric of Hills and Trucano (2001), which removes those directions of the validation 
space that are not important to the target application. We call this method the projection 
method since it projects the measurements onto a subspace that does not include the non-
relevant direction. Hills and Trucano (2001) demonstrated this metric assuming the model 
parameters were normally distributed for one-dimensional shock physics validation data 
with a two-dimensional shock physics application problem. In the present work, we 
reproduce Gaultney’s extension of this metric for non-normally distributed model 
parameters using a Maximum Likelihood/Monte Carlo method. Hills and Trucano (2002) 
showed that the Maximum Likelihood approach gives the same results as the r2 metric 
developed by Hills and Trucano (2001) for normally distributed measurements and model 
parameters, and for a model that is locally linear in the parameters. While this method 
does tend to weigh the more important directions in the validation space more, the 
weighing is not optimized from a target application point of view.  
 
A second method presented here is based on weighting the measurements in a fashion so 
that they reflect the target application. We call this the representation method since we 
use the validation experimental measurements to represent the target application decision 
variable. This has the effect of not only throwing out the directions in the validation space 
that are not important to the application, but also weighting the remaining directions 
based on their importance. The implementation of the method, as presented here, does 
require that the validation experiments cover the target application in the sense illustrated 
in the report. More specifically, the validation experiments collectively must be sensitive 
to the same parameters as is the target application. For example, if heat conduction is 
important to a transient target application decision variable, then the target application 
decision variable will be dependent on the thermal diffusivity. If the validation 
experiments are not dependent on thermal diffusivity, then the validation experiments do 
not reflect the target application and weights cannot be developed. 
 
The representative method also allows us to evaluate the sensitivity of the target 
application decision variable to the validation measurements. If the decision variable is 
not dependent on the same model parameters as the validation experiments or suite of 
experiments, then the target application is not covered by the validation experiments and 
additional experiments must be developed. In contrast, if the decision variables are overly 
sensitive to small differences in the measurements, then the decision variable will be 
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overly sensitive to noise in the measurements. In this case, we must make sure that the 
experiments are designed so that noise is sufficiently small. 
 
In the case of more validation measurements than important model parameters, we have 
the luxury of weighting these measurements so that the decision variable is not as 
sensitive to measurement noise, while still representing the target application. In doing so, 
we still must require that the validation experiments provide adequate coverage of the 
target application. For example, if we have several temperature measurements at the same 
distance from a boundary in a one-dimensional heat conducting slab, then the present 
methodology will take a weighted average of these multiple measurements. This 
averaging reduces the effect of noise in the measurements.  
 
The third approach developed here is an extension of the representative method just 
discussed that also includes the effect of uncertainty in the model parameters for the 
validation experiments, as well as the measurements. As in the previous case, this method 
weights the measurements such that the weighted measurements represent the target 
application decision variable, while being minimally sensitivity to measurement and 
validation model parameter uncertainties.  
 
These methods were applied to a series of heat conduction problems and to shock physics 
data. In one example, for which internal heat generation was important, we found that if 
internal heat generation was not included in the validation experiments, the representative 
method could detect this lack of coverage. However, we also found that simply 
performing an experiment that did have internal generation was not, in itself, adequate to 
resolve the target application decision variable. By including additional heat conduction 
experiments, our validation experiments did cover the application. Unfortunately, even 
though the target application decision variable could be represented by the validation 
experiments, the representation was very sensitive to measurement noise. We showed that 
the sensitivity could be reduced by properly locating the internal measurements or by 
providing additional measurements. Thus, we see that the methodology developed here 
can also be used for experimental design, accounting for the impact of the anticipated 
target application. 
 
All of these methods require that we identify the model parameters that are important to 
the target application. Failure to do so can result in incorrect representation of the physics 
of the target application. For example, in the development of the transient heat 
conduction example problem for this report, we initially assumed (not presented here) 
that the important model parameters were the boundary temperatures and the 
conductivity. However, when we did not get the transient behavior we expected, we 
realized that we must also include either thermal diffusivity or the density-heat capacity 
product. The method failed to detect that the validation experiments did not cover this 
important aspect of transient heat conduction because we did not initially choose thermal 
diffusivity as an important model parameter for the target application. Methods of this 
type cannot replace engineering judgment. However, these methods can quantify the 
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results of this judgment, which will greatly facilitate consensus building concerning the 
validity of the model. This is a very important outcome for any validation activity. 
 
Finally, we note that all of these methods can be used to develop application-based model 
validation metrics. We demonstrated such metrics using the projection method for non-
normal distributions and using the representation method for normal distributions. As 
discussed in the previous two chapters, both methods can be applied to non-normal 
distributions in the model parameters using the Maximum Likelihood method. 

4.2 Recommendations 
 
Of the three methods, we suggest that the representative method that addresses 
uncertainty in both the measurements and in the model parameters for the validation 
experiment, has the most potential. This method 1) looks at the coverage of the target 
application decision variables, 2) provides an indication as to how well the decision 
variables of the target application are represented by the validation experiments, and 3) 
provides an assessment of the sensitivity of this representation to uncertainty in the 
measurements and in the model parameters. While this method, as applied here, requires 
that the suite of validation experiments cover the target application, we suggest (not 
shown here) that this method can be modified so that it can also apply to target 
applications not adequately covered by the validation experiments. In the present context, 
inadequate coverage occurs when the sensitivities of the target application decision 
variable to the important model parameters are not reflected in the validation 
experiments. The representative method can be modified to be applicable to this situation 
by either ignoring the model parameters that are important to the target application, but 
not represented in the validation experiments; or by using a pseudo-inverse to delete the 
effect of these directions. In either case, we should look at the results as an indication of 
the sensitivity of the target application decision variables to only those model parameters 
that are represented. We must keep in mind that if the suite of validation experiments 
does not adequately cover the physics of the target application (i.e., possess the 
appropriate sensitivities), then we will not know what the effect of the missing physics is 
on our representation of the target application. 
 
This report represents the fourth in a series of reports developed by the present authors 
(see Hills and Trucano, 1999, 2001, 2002). We suggest that much progress has been made 
in understanding how to incorporate uncertainty in model parameters and noise in the 
measurements into model validation metrics. We also have developed a clearer 
understanding on how to relate validation experiments to target applications. However, 
we also suggest that the application of these metrics to problems of interest to Sandia 
National Laboratories has not kept pace with the mathematical development. Part of the 
reason for the lack of focus on real problems has been due to the need to develop an 
adequate suite of validation tools that are necessary to rigorously test models against data, 
and because there were very significant outstanding issues (such as the question of how 
suites of experiments at the unit level should be combined to represent a target 
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application). With the completion of this report, we strongly recommend that we return 
our focus to applications of this methodology to existing applications of interest to Sandia 
National Laboratories.  
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Appendix A. Shock Physics Data 
 
The shock physics data used by Hills and Trucano (2001) are reproduced in Table A.1 for 
completeness. The first 2 columns of this data were taken from Marsh (1980). The 
remaining columns were evaluated using CTH (Bell et. al., 1998, Hertel and Kerley, 
1998, McGlaun et. al., 1990), a Eulerian shock physics code. We also show the 
derivatives (sensitivity coefficients) for the predicted measurements as a function of two 
model parameters (CS, S1) that appear in the Mie-Gruniesen Equation of State model used 
by the CTH code (Hertel and Kerley, 1998).  
 

Table A.1: Shock Physics Data, CTH Predictions, and Sensitivity Coefficients 
 

Up Us_exper Us_pred SC
Us

∂
∂  

1S
Us

∂
∂  

278 5811 5731.7 1.00337 276.63 
440 6021 5946.5 1.00355 451.34 
472 6054 5988.3 1.00412 475.10 
503 5996 6030.1 1.00337 497.32 
507 6055 6035.4 1.00337 497.32 
609 6103 6170.0 1.00225 597.70 
626 6262 6192.8 1.00393 609.96 
627 6228 6194.1 1.00374 610.73 
671 6164 6252.0 1.00187 655.94 
722 6367 6319.4 1.00468 722.61 
727 6323 6326.5 1.00412 714.18 
728 6310 6327.9 1.00412 714.94 
778 6388 6394.0 1.00037 750.96 
786 6312 6403.1 1.00805 790.80 
792 6314 6412.3 1.00580 786.97 
792 6365 6412.3 1.00580 786.97 
799 6353 6420.7 1.00730 789.27 
800 6393 6422.1 1.00730 784.67 
800 6459 6422.1 1.00730 784.67 
802 6397 6424.8 1.00711 787.74 
802 6355 6424.8 1.00711 787.74 
809 6422 6433.2 1.00655 807.66 
818 6366 6445.9 1.00412 804.60 
831 6436 6461.8 1.00823 819.16 
859 6470 6500.1 1.00636 848.27 
863 6486 6505.3 1.00599 855.17 
871 6561 6515.8 1.00468 868.20 
888 6541 6537.8 1.00636 867.43 
891 6589 6541.8 1.00655 872.03 
896 6589 6547.0 1.00936 889.66 
897 6579 6548.3 1.00954 890.42 
901 6402 6553.7 1.00954 896.55 
953 6616 6624.0 1.00037 929.50 



     

 

 78 
 
  
 
 

953 6617 6624.0 1.00037 929.50 
966 6659 6639.6 1.00898 957.85 
975 6607 6652.1 1.00730 946.36 
988 6507 6667.9 1.00730 970.12 

1110 6844 6830.4 1.00318 1075.10 
1116 6843 6838.4 1.00374 1081.99 
1119 6846 6842.4 1.00393 1085.06 
1121 6840 6845.0 1.00412 1088.12 
1128 6756 6852.1 1.00430 1112.64 
1130 6823 6854.8 1.00430 1115.71 
1134 6826 6860.2 1.00393 1120.30 
1136 6831 6863.0 1.00374 1108.81 
1141 6795 6869.7 1.00355 1111.11 
1159 6915 6892.7 1.01010 1156.32 
1220 6981 6974.4 1.00225 1180.84 
1220 7014 6974.4 1.00225 1180.84 
1277 6943 7047.5 1.01048 1270.50 
1352 7092 7145.3 1.00674 1349.43 
1383 7225 7187.8 0.99663 1356.32 
1437 7156 7257.4 1.00805 1416.86 
1446 7211 7270.1 0.99869 1436.01 
1467 7305 7296.2 1.00543 1461.30 
1498 7342 7339.6 1.00225 1415.32 
1557 7462 7409.8 1.01516 1582.38 
1574 7426 7438.4 0.99551 1536.40 
1578 7326 7443.2 1.00337 1545.59 
1605 7407 7479.1 0.99345 1554.79 
1742 7690 7654.0 1.01796 1758.62 
1744 7616 7659.3 1.01291 1740.23 
1779 7758 7708.4 1.00225 1718.01 
1858 7850 7809.0 1.00879 1836.02 
1939 7773 7915.6 1.00580 1904.98 
1948 7973 7927.8 0.99626 1905.75 
1959 8015 7943.1 1.00318 1885.06 
2154 8150 8199.8 1.00767 2078.16 
2156 8332 8202.4 1.00748 2079.69 
2335 8421 8432.7 1.00580 2314.18 
2371 8436 8476.9 1.00468 2344.83 
2467 8699 8602.9 1.01553 2452.87 
2477 8618 8616.4 1.01628 2447.51 
2595 8829 8771.9 1.00281 2539.46 
2605 8744 8785.7 1.01497 2537.93 
2608 8664 8789.9 1.01478 2590.80 
2641 8848 8830.3 1.01329 2599.24 
2645 8797 8835.6 1.01385 2596.17 
2709 8792 8926.9 0.99083 2527.20 
2735 8909 8957.6 0.99663 2641.38 
2738 8916 8961.6 0.99644 2609.20 
2817 9144 9060.7 1.01123 2747.89 
2911 9070 9186.1 1.00187 2848.28 
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2935 9231 9211.4 1.02844 2938.70 
2974 9236 9269.3 1.01235 2890.42 
2987 9401 9285.4 1.01254 2848.27 
3030 9177 9347.5 0.99457 2834.49 
3031 9180 9348.2 0.99588 2839.84 
3086 9317 9413.6 0.99046 3062.07 
3181 9596 9540.0 1.00973 3022.99 
3187 9549 9547.2 1.01179 3033.71 
3217 9365 9592.5 0.98727 3037.55 
3225 9666 9603.2 0.98821 3157.85 
3238 9762 9614.2 1.00355 3213.79 
3260 9477 9644.4 0.98727 3190.80 
3274 9617 9655.6 1.01310 3265.14 
3347 9775 9752.4 1.02526 3228.35 
3361 9751 9781.7 1.00543 3208.43 
3376 9803 9801.6 1.00430 3176.25 
3381 9670 9807.6 0.99326 3183.91 
3387 9609 9814.7 0.99532 3193.87 
3400 9916 9828.9 1.00243 3322.60 
3419 9866 9854.9 0.98615 3309.57 
3463 9654 9901.4 1.00318 3416.85 
3472 9697 9913.4 1.00281 3431.42 
3481 9727 9931.5 0.99121 3396.93 
3508 9861 9961.1 1.00711 3409.96 
3508 9880 9961.1 1.00711 3409.96 
3563 10117 10044.4 1.00468 3445.97 
3629 10238 10127.7 1.00075 3578.54 
3658 9876 10163.3 0.99345 3581.61 
3736 10138 10273.5 0.98765 3510.34 
3745 10162 10285.5 0.98578 3586.21 
3772 10458 10315.1 1.01834 3608.43 
3786 10341 10334.3 1.01591 3727.97 
3930 10552 10524.0 0.98690 3734.10 
3967 10384 10574.8 0.99944 3757.86 
3988 10572 10603.2 0.99382 3858.24 
4001 10572 10612.4 1.01853 3914.17 
4041 10572 10660.0 1.01534 4030.65 
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